LAURIDSEN WATER WELL COMPLAINT REVIEW

Prepared by: Alexander Blyth, P.Geol., Ph.D.

Alberta Research Council Inc. Permit to Practice P03619

Prepared for:

Alberta Environment 10th Floor Oxbridge Place 9820 - 106 Street Edmonton, Alberta T5K 2J6

December 20, 2007

Contact Information: Alec Blyth Alberta Research Council Inc. 3608 – 33 Street NW Calgary, Alberta T2L 2A6 Phone: 403-210-5345 E-mail: blyth@arc.ab.ca

EXECUTIVE SUMMARY

In November of 2005 Ms. Lauridsen initiated a complaint of increased methane in her well with EnCana. In late November of 2005 Alberta Environment (AENV) initiated correspondence with Ms. Lauridsen to investigate a water well complaint and made arrangements to undertake sampling. The Alberta Research Council (ARC) was contracted by AENV to critically review the scientific and technical data contained in the AENV and Alberta Energy and Utilities (AEUB) Lauridsen water well complaint file. In addition, ARC was asked to do an independent review of all relevant data, including new data that has become available through Directive 35 (Standard Baseline Water-Well Testing for CBM/NGC Operations).

The ARC independent review and evaluation involved the examination of all the data contained in the AENV file and the following additional lines of evidence:

- Review of the local and regional geology and hydrostratigraphy.
- Calculation of hydraulic gradients between the aquifer in the Upper Horseshoe Canyon Formation and the CBM wells.
- A theoretical review of the potential of methane migration along a fracture (potentially induced by well stimulation) between the Horseshoe Canyon aquifer and the CBM well using the observed pressure gradients.
- An estimation of the change in dissolved methane concentrations in the Lauridsen well related to the fluctuations in water level observed in the Lauridsen well.
- A graphical and statistical approach to the evaluation of the major ion, bacteria, gas and isotope chemistry of the Lauridsen well, 145 surrounding water wells from the AENV database and CBM wells in the area.

The Alberta Research Council's overall conclusion of the evidence from the review of the AENV and AEUB files, along with a new review and evaluation of additional data and concepts, is that energy development projects in the area most likely had no adverse affects on Ms. Lauridsen's private water supply well.

TABLE OF CONTENTS

INTF	RODUC	TION	1
REG	GIONAL	GEOLOGIC AND HYDROGEOLOGIC SETTING	1
2.1	STRAT	IGRAPHY	1
2.2	REGIO	NAL STRESS REGIME	2
2.3	HYDRC	STRATIGRAPHY AND GROUNDWATER FLOW AND GRADIENTS	2
ENE	RGY W	/ELL INFORMATION	3
LAU	RIDSE	N WATER WELL INFORMATION	10
4.1	INITIAT	ION OF WELL COMPLAINT	10
4.2	WELL [DESIGN, CONSTRUCTION AND MAINTENANCE	10
4.3	STRAT	IGRAPHY	10
4.4	Hydro	OGEOLOGY	13
	4.4.1	General Groundwater flow directions	13
	4.4.2	Vertical Hydraulic Gradient	13
	4.4.3	Hydraulic Conductivity	13
	4.4.4	Water levels and methane saturation	14
	4.4.5	Potential for Methane Gas Migration	15
4.5	WATEF	R AND GAS CHEMISTRY	15
	4.5.1	Historical Major Ion and Bacteria Chemistry Prior to Complaint	15
	4.5.2	Major Ions, Metals and Bacterial Chemistry	16
	4.5.3	Dissolved Organic Chemistry	20
	4.5.4	Atmospheric Elements and Hydrocarbon Gas Chemistry	20
	4.5.5	Stable Carbon Isotope Chemistry on Hydrocarbon Gas	21
CON	ICLUSI	ONS	32
CLO	SURE		35
REF	ERENC	ES	36
	INTE REG 2.1 2.2 2.3 ENE LAU 4.1 4.2 4.3 4.4 4.5 CON CLC REF	INTRODUC REGIONAL 2.1 STRAT 2.2 REGIOI 2.3 HYDRC ENERGY W LAURIDSE 4.1 INITIAT 4.2 WELL I 4.3 STRAT 4.4 HYDRC 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5 WATEF 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 CONCLUSI CLOSURE REFERENC	INTRODUCTION REGIONAL GEOLOGIC AND HYDROGEOLOGIC SETTING 2.1 STRATIGRAPHY 2.2 REGIONAL STRESS REGIME 2.3 HYDROSTRATIGRAPHY AND GROUNDWATER FLOW AND GRADIENTS ENERGY WELL INFORMATION LAURIDSEN WATER WELL INFORMATION 4.1 INITIATION OF WELL COMPLAINT 4.2 WELL DESIGN, CONSTRUCTION AND MAINTENANCE. 4.3 STRATIGRAPHY. 4.4 HYDROGEOLOGY 4.4.1 General Groundwater flow directions. 4.4.2 Vertical Hydraulic Gradient 4.4.3 Hydraulic Conductivity. 4.4.4 Water levels and methane saturation. 4.4.5 Potential for Methane Gas Migration. 4.5 WATER AND GAS CHEMISTRY 4.5.1 Historical Major Ion and Bacteria Chemistry Prior to Complaint

LIST OF TABLES

Table 1 AEUB review of wells near the Lauridsen residence.	8
Table 2 Static water levels in the Lauridsen well.	14
Table 3 Summary of Chemical Analyses for the Lauridsen Water Well	17
Table 4 Energy (and GOWN) well QA/QC data quality.	22
Table 5. Statistical values and T-Tests of the gas and isotope data	31

LIST OF FIGURES

Figure 1 Energy wells in the vicinity of the Lauridsen water well	7
Figure 2 Map showing location of cross-section	.11
Figure 3 Geologic cross-section.	.12
Figure 4. Piper plot of water chemistry from the Lauridsen well, Surrounding D35 water	
wells and the GOWN wells.	18
Figure 5 Schoeller plot of water wells with methane present	19
Figure 6 Schoeller plot of water wells with no methane	19
Figure 7 Histogram of nitrogen concentrations in water wells and energy wells	21
Figure 8 Histogram of the carbon isotope values of methane in all water wells and Energy wells	gy 23
Figure 9 Histogram of the carbon isotope values of ethane in all water wells and energy	1
wells	.24
Figure 10 Methane concentration versus δ ¹³ C of methane	25
Figure 11 Ethane concentration versus δ ¹³ C of ethane	26
Figure 12 δ^{13} C Methane versus δ^{13} C Ethane	27
Figure 13 δ^{13} C Methane versus δ^{13} C CO ₂	28
Figure 14 Mixing plot of δ^{13} C of methane versus the methane/C2+ ratio	29

1 INTRODUCTION

The Alberta Research Council (ARC) was contracted by Alberta Environment (AENV) to conduct a review of the technical and scientific data on the subject of a complaint placed by landowner Ms. Fiona Lauridsen, located SW-11-027-22 W4M, near Redland, Alberta. The complaint was about Coal Bed Methane (CBM) activities undertaken by EnCana Corporation and her concerns about the presence of increased methane gas in her water well and an associated or simultaneous decrease in water quality. Historically, methane has been observed in water wells in the Rosebud and Redland areas. This is an expected occurrence because most water wells in the area are completed in coal that can contain methane. The complainant suggests that CBM activities in the area have increased the amount of methane in her well. ARC undertook this review to assess whether the evidence suggests that energy resource extraction operations have impacted the water quality on the landowner's property through the migration of methane from the CBM well to the water well. ARC agreed to work under contract to Alberta Environment (AENV) to independently assess the situation and provide conclusions identifying whether or not the AENV investigation suggests groundwater has been impacted by CBM or conventional oil/gas extraction activities in the area.

This report summarizes ARC's independent conclusions based on scientific and technical data surrounding the investigation of the complaint. The review is based primarily on the collected information in AENV's water well complaint file. Available scientific and technical data include groundwater quality data, water well construction characteristics, oil and gas extraction and production activities, and local groundwater gas characteristics. In addition, ARC endeavoured to compile, review and assess supplementary information not included within the complaint file. This supplementary information includes results of an evaluation of CBM Baseline water well testing data in the general area (provided by AENV and WorleyParsons Komex), digital elevation maps and a geological cross section of the area constructed by ARC.

2 REGIONAL GEOLOGIC AND HYDROGEOLOGIC SETTING

2.1 Stratigraphy

The study area is found within the Alberta Basin. A complete review of the geology of the basin is provided in Mossop and Shetsen (1994). A brief overview is given below. The Alberta basin originated in the late Proterozoic by rifting of the North American craton Early sedimentary deposition was dominated by carbonates, evaporates and shale. Uplift of the Rocky Mountains in the early Cretaceous deposited fluvial sandstone and shale into the developing foreland basin. Sea level rises and falls during the middle to late Cretaceous resulted in deposition of marine shale and coal-bearing fluvial sandstone. Peat accumulation provided the source material for the major coal-bearing strata including the Manville, Belly River and Edmonton (including the Horseshoe Canyon Formation). The latter two formations are where the EnCana CBM wells are completed. A period of compression and uplift in the Tertiary led to the deposition of fluvial sandstone, siltstone and shale. Peat accumulation provided the source material for the coals in the Cretaceous/Tertiary Scollard Formation and the Tertiary Paskapoo Formation. Glaciation during the Quaternary eroded the bedrock and deposited unconsolidated sediments on the bedrock. A description of the geology encountered in the area of investigation is as follows:

Belly River Group

The deepest geologic unit penetrated by the EnCana CBM wells is the Belly River Group. The upper part (Oldman Formation) of the Belly River Group consists of sandstones, siltstones and coal (Lethbridge) deposited in a floodplain and lacustrian environment (Beaton et al. 2002).

Bearpaw Formation

A marine transgression deposited fine-grained marine sediments of the Bearpaw Formation directly onto the Belly River Group. These sediments are predominantly shale and siltstone, with some sandstone beds and claystone (Macdonald et al. 1987).

Edmonton Group

The Edmonton group is comprised of four formations, from oldest to youngest: the Horseshoe Canyon Formation, the Whitemud Formation, The Battle Formation and the Scollard Formation. Only the Horseshoe Canyon is present in the study area. The Horseshow Canyon formation consists of shale, siltstone and coal members (Basal, Rockyford, Drumheller, and Weaver), deposited in deltaic and fluvial environments (Beaton et al 2002). In the area, the Horseshoe Canyon Formation is covered by Late Tertiary–Quaternary unconsolidated sediments or till.

2.2 Regional Stress Regime

The stress regime of upper Cretaceous – Tertiary coal-bearing strata in Alberta has a strong correlation to permeability and fracture directions in coal (face cleats). This in turn has a strong control on the direction that "fluids" (both gas and water) tend to migrate in these strata. Rock mechanics theory and field measurements shows that fractures trend in a direction normal to the least compressive stress. Horizontal stress orientations in Alberta have been measured using well breakout analyses (i.e. damage to boreholes caused by stresses acting on the rock) (Bachu and Michael 2002). Based on breakout analysis the most likely azimuth (orientation) of fractures and face cleats in the coal would be about 055°E of N. Three energy wells line up on an approximate 055° azimuth to the Lauridsen well. These well, and others, were investigated in section 3 of this report.

2.3 Hydrostratigraphy and Groundwater Flow and Gradients

Regional flow systems across the Alberta Basin are controlled in part by major recharge areas along the Rocky Mountain front in western Alberta. Regional flow within the basin is northeast towards the basin edge (Hitcheon 1969a,b). Bachu (1999) recognised that flow in the northern part of the basin was driven by topography north-eastward, however, flow in Upper Cretaceous rocks in the south-western part of the basin (including the study area) was directed south-

westward, driven by erosional rebound due to stripping of up to 3800m of sediments (Parks, and Tóth 1995; Bachu 1999). Regionally, the Horseshoe Canyon Formation acts as an aquifer above the Bearpaw Formation aquitard. Below the Bearpaw, the upper Belly River Formation acts as an aquifer.

In the Redland area, shallow groundwater flow within the overburden is directed towards the Rosebud River. Regional groundwater flow in the Upper Horseshoe Canyon aquifer (Carbon Thompson and Weaver coals where most domestic wells including the Lauridsen well are completed) is directed to the northeast (Bachu and Michael 2002). Hydraulic conductivities of the rock are expected to be low to intermediate and yields from wells in this area are expected to be 1 to 5 imperial gallons per minute (Borneuf 1972). The Lauridsen well was tested at between 0.7 and 2.4 imperial gallons per minute and had an estimated average hydraulic conductivity of 2x10⁻⁶ m/s as estimated by ARC from the available pumping test data.

In the deeper (below 200 m) Horseshoe Canyon Formation groundwater flow is also directed to the northeast (Bachu and Michael 2002). Permeability data for the coal zones are not well reported in the literature. However, it is expected that permeability of the coal decreases with depth of burial. Unpublished data referred to by Bachu and Michael (2002) indicates permeabilities for deep coals on the order of a few mD which indicates very low primary permeability. Completion data from the EnCana wells in the area suggest that the coals (with the exception of the upper Carbon Thompson and Weaver members of the Horseshoe Canyon) are not water saturated based on pressure measurements and water production data.

Regionally groundwater flow in the Belly River aquifer is directed to the southwest due to erosional uplift (Parks and Tóth 1995; Bachu 1999). Coal permeability is expected to be on the order of a few mD, similar to that in the overlying Horseshoe Canyon coals. Completion data from the EnCana wells in the area show that the coals are not water saturated. The implication of this is that hydrocarbon gases are not expected to be transported from the deep (gas saturated) coals to the shallow (water saturated) coals in a dissolved state.

Large downward vertical gradients between the upper Horseshoe Canyon aquifer (where the Lauridsen well is completed) and the deeper Horseshoe Canyon coals (Drumheller member and below) are expected and were measured (Section 4.4.2) The Horseshoe Canyon and Belly River coal zones are underpressured (or lower) with respect to predicted hydraulic gradients based on elevation differences. These lower pressures have been interpreted to be due to erosional rebound caused by stripping of up to 3800m of sediments (Parks. and Tóth, 1995; Bachu 1999).

3 ENERGY WELL INFORMATION

A map of the energy wells within a minimum 1.5 km radius of the Lauridsen well is shown on Figure 1. A list of gas well information (including the drilling date, loss of circulation, surface casing depth, total depth, cement returns and perforations) was supplied to AENV by EnCana

(Appendix A). More detailed information was gathered on several wells in the area because of their proximity (<800 m) from the Lauridsen well and a specific well of concern identified by Ms. Lauridsen with perforation depths of 125.5 m. A review of the tour reports was provided by Brenda Austin of the AEUB (Table 1). All depths on the table are in mKb. ARC has added the elevation (above seal level) of the upper perforations in the energy well from AEUB and EnCana records. The 4 energy wells in closest proximity (<800 m) to the Lauridsen water well and the specific CBM well (05-14) that had shallow perforations are discussed below. Compositional and/or isotopic data was available for some of these energy wells in the vicinity of the Lauridsen well and is discussed in section 4 of this report.

The closest energy well (320 m ENE) to the Lauridsen well is 00/07-11-27-22W4M/3. This well lines up with expected predominant fracture direction in the area (section 2 above). This well was originally completed in the Basal Belly River Formation, Viking & Manville formations with perforations from 1188.5 to 1191.5, 636 to 639 and 604 to 607 mKb (metres from the Kelly bushing which is usually 3 to 4 metres above ground surface). Conventional gas was produced from the two lower perforations. The lower zones were abandoned with a bridge plug and capped with cement in April 2005 and the well was re-completed in the Horseshoe Canyon Formation with the upper perforation between 175.9 to 177.9 mKb. Well stimulation was done using 100% nitrogen gas. AEUB records show that since 2005 this well produces 0 to 1.3 m³ of water per month, and to-date has a cumulative water production of less than 4 m³. This is a relatively small amount of water that is likely coming from the coal and from condensation of water vapour with the gas. No lost circulation was reported for this well and both the surface and production casings had good cement returns. This information does not indicate any apparent drilling and construction issues with this well.

The next closest energy wells are 00/04-11-27-22W4M and 02/04-11-27-22W4M and are both approximately 700 m to the south-west of the Lauridsen well. These wells also line up with expected predominant fracture direction. The 00/04-11-27-22W4M well is completed in the Edmonton, Belly River, Viking and Manville Formations with uppermost perforations from 616.5 to 619.5 mKb in October 1997. Circulation was lost during the drilling of the surface casing between 12 and 31 m due to gravel in the overburden material above the bedrock. This is the sandy gravel that was encountered during the drilling of the GOWN well in the area and also noted on several water well drilling records in the area. Circulation control was regained by adding bentonite and lime to the drilling fluids. The surface casing was cemented with good returns to the surface noted. It is very unlikely that this circulation loss in the overburden could have affected the Lauridsen well which is 700 m to the south west and completed in bedrock at about 60 m. AEUB records show that since 2000 this conventional gas well produces 0 to 8.8 m³ of water per month, with a cumulative water production of 74 m³.

The 02/04-11-27-22W4M well is completed in the Edmonton (Horseshoe Canyon) Formation with uppermost perforations from 190.5 to 191.5 mKb and was drilled in January 2004. Well stimulation was done using 100% nitrogen gas. The well had good cement returns on the surface and production casings. There are no apparent drilling and construction issues with this well. Since 2004 this gas well produces 0 to 3.6 m³ of water per month, with a cumulative water

production of 19.5 m³. The water is likely coming from the coal and from condensation of water in the gas.

EnCana CBM well 00/05-14-027-22 W4M, located about 2 km northwest of the Lauridsen well, was drilled October 13, 2003, perforated February 15, 2004 and nitrogen fractured on March 2, 2004. The top perforation was stimulated with 3,000 m³ of nitrogen (at standard temperature and pressure) at a rate of 500 m³/min for six minutes. The top set of perforations in this CBM well (125.5 to 126.4 mKb) was in the Weaver coal zone, the same as many of the local water wells. Given the similar depths of the CBM zones and the water wells, with a horizontal distance of 2 km, additional evaluation of possible effects of fracturing on the water-bearing aquifer is merited. Three possible effects are considered:

- i. Change in water quantity (water levels) due to initial pressure increase during fracturing and from production of water from the aquifer.
- ii. Change in water quality due to injected nitrogen reacting with the groundwater in the coal zone.
- iii. Change in water quality (increased methane) from methane migration from deeper zones into the water-bearing aquifer.

i. The Hydrogeological Consultants Ltd (2005) report calculated an estimated increase in water levels in a well (1.2 km from the 00/05-14-027-22 W4M CBM well) caused by the injection of nitrogen. An increase in water level of 0.02 m would be expected to persist for 640 hours at a distance of 1.2 km. The details of the calculation are not presented in the consultants report, but it appears that they have used an equivalent porous media model to determine the changes. This may not adequately model fracture flow in coal aquifers. If the CBM well continued to produce water from the upper perforation during gas production, a drop in water levels would be expected over time. This drop can be calculated using the water production rate, the aquifer transmissivity and storativity, and the distance from the CBM well. After the CBM well was completed, water was observed (during a video inspection) entering the 125.6 to 126.5 m interval (Hydrogeological Consultants Ltd 2005). The upper perforation of EnCana CBM well 00/05-14-027-22 W4M was unsuccessfully cement squeezed (abandoned) on July 1, 2004. The upper 4 perforations (between 125.5 and 142.4 m) were cement squeezed on July 12, 2004, successfully abandoning the zone. These zones would have been pressure tested to confirm successful abandonment. On October 10 2004 the whole well was abandoned with a cement plug from 17 to 425 m. The current public well ticket for this well states the status as "abandoned gas". As the connection of the CBM well to the local water-bearing aguifer was eliminated by this cement squeeze, completed in within 4 months of fracturing and with only 4 m³ of water was reported recovered from the well, no measurable effect on local water well quantity would be expected.

ii. The injected slug of nitrogen from the fracturing 00/05-14-027-22 W4M could potentially affect the water quality of water wells completed in the same aquifer. After fracturing of the 00/05-14-027-22 W4M CBM well, the nitrogen gas pressure was allowed to bleed off and then the well was "flowed" (pumped) for 75 days to produce back the nitrogen. An evaluation of amount of

nitrogen removed from the coal zones during this flow was done by Hydrogeological Consultants Ltd (2005). This was based on an unreferenced graph titled " N_2 concentration decline post-stimulation- Strathmore well" that shows nitrogen concentration of produced gas as a function of flow time. The Hydrogeological Consultants Ltd (2005) evaluation concluded that "there is no reason to expect any significant nitrogen remained in the 125.5 to 126.5 metre coal zone when the perforations were closed using a cement squeeze".

iii. The connection between the upper and lower zones of the 00/05-14-027-22 W4M CBM well, through the shallower and deeper perforations, could potentially lead to the upward migration of methane from a lower zone to the water-bearing aquifer. Water entering the upper perforations of 00/05-14-027-22 W4M would tend to counteract the migration of methane into the water-bearing aquifer. A brief discussion of the physics involved in migration of a methane bubble is presented in section 4.4.5 below and in Appendix D).

A residential water well is located about 1200 m south-west of the 00/05-14-027-22 W4M CBM well. Mr. Sean Kenny complained to EnCana that sediment started to be produced from an old (1950) water well on his property at NE-10-027-22 W4M and a 2000 well at 07-10-027-22 W4M. A new well for the Kenny property (completed September 29, 2004) at NE-10-027-22 W4M also produced sediment which did not significantly improve through well development. A thorough review of Mr. Kenny's wells is not within the scope of this ARC review. EnCana contracted Hydrogeological Consultants Ltd to investigate these complaints (Hydrogeological Consultants Ltd 2005 and 2006). Remedial work (placement of k-packers and liners) was performed on Mr. Kenny's wells and the amount of sediment did reduce (Hydrogeological Consultants Ltd 2005 and 2006). Unfortunately, no gas compositional or isotopic analyses were done on the energy well or Mr. Kenny's well during the time period of the perceived impact to help determine if there was any connection between the water well problems and CBM drilling.

Theoretical evaluations (Hydrogeological Consultants Ltd 2005) of the pressure pulse created by the injection and removal of the nitrogen during flowing of the well (calculated with same method as above) indicate an impact to Mr. Kenny's wells is unlikely. However, without direct measurement of water levels (pressures) and chemical/isotopic measurements in both the CBM well and the water wells during the event, it is inconclusive as to whether or not Mr. Kenny's wells were impacted by nitrogen fracturing of 00/05-14-027-22 W4M.

Figure 1 Energy wells in the vicinity of the Lauridsen water well. Energy wells 4-11 and 7-11 line up with the expected fracture direction (arrow on map).

Table 1 AEUB review of wells near the Lauridsen residence.

Well Location	Spud date/FDD/On	Surface Casing	Total Depth	Perforation Depths (m) and Dates	Fracture Depths (m) and Dates	Comments
	Production	(m)	(m)			
00/14-10-027-22W4 Production history : Perfs 1479 – 1481 & 1476– 1478, tested and abandoned. Perfs 1249-1252, on production 19 Jun 01 and perfs 559.5 -603 added July 02, and 461.5 – 464.5 & 451 – 455 added Aug 02. Packer installed at 459 Oct 02 to isolate water production from lower zones. CBM zones added in 07. Less than 1m3/d water production.	05 Mar 01 09 Mar 01 On prod. 19 Jun 01 & 25 Sep 07	182.0	1511.0	$1479.0 - 1481.0 / 29 \text{ Mar 01} \\ 1476.0 - 1478.0 / 29 \text{ Mar 01} \\ 1249. 0 - 1252.0 / 11 \text{ Apr 01} \\ 559.5 - 603.0 / 6 \text{ Jul 02} \\ 461.5 - 464.5 / 28 \text{ Aug 02} \\ 451.0 - 455.0 / 28 \text{ Aug 02} \\ 451.0 - 455.0 / 28 \text{ Aug 02} \\ \text{All below on 16 Sep 07} \\ 401.4 - 401.9, 395.0 - 395.5 \\ 390.8 - 391.3, 349.3 - 349.8 326.0 \\ - 327.0, 320.6 - 321.1 \\ 260.8 - 262.8, 259.3 - 259.8 \\ 249.9 - 250.4, 245.8 - 246.3 \\ 231.0 - 233.0, 229.7 - 230.2 \\ 220.7 - 221.2, 216.3 - 216.8 \\ 211.5 - 212.0, 210.0 - 211.0 \\ \end{array}$	1249.0 – 1252.0 / 1 May 01 559.5 – 603.0 / 2 Aug 02 Perfs between the depths of 210.0 – 401.9 were individually frac'd on 23 Sep 07	Bridge plug capped with cement at 1466.5 to 1474.5 (11 Apr 01) - abandoned lower zone .Also a bridge plug at 459.0 (11 Oct 02) to isolate lower zones. No lost circulation reported. Cement returns on surface and production casing. No wellbore issues evident. Upper perf at 632.90 MASL
00/15-10-027-22W4 (Directionally drilled well. Surface hole in 14-10 and bottom hole in 15-10.) Production history: 718-720 on production 19 Mar 05. CBM perfs on production 25 Sep 07. Water production less than 1m3/d	4 Jun 03 7 Jun 03 On prod. 19 Mar 05 & 25 Sep 07	135.0	1548.0	1498.0 - 1500.0 / 13 Aug 03 1414.0 - 1417.0 / 24 Oct 03 718.0 - 720.0 / 4 Dec 03 Following perfs - 16 Sep 07 740.2 - 741.2, 705.7 - 706.2 555.4 - 555.9, 404.4 - 404.9 399.4 - 400.4, 395.5 - 396.0 353.7 - 354.2, 328.9 - 329.9 232.0 - 323.5, 260.5 - 263.5 259.1 - 259.6, 257.3 - 257.8 239.2 - 239.7, 229.6 - 231.6 228.2 - 229.2, 225.4 - 225.9 219.0 - 219.5, 214.5 - 215.0 208.3 - 210.3	1498.0 – 1500.0/2 Oct 03 1414.0 – 1417.0/15 Nov 03 Perfs from 208.4 – 741.2 frac'd individually on 20 Sep 07	Lower zones abandoned w/ Bridge plugs capped w/ cement @ 1484 – 1492 on 23 Oct 03, and 1404 – 1412 on 5 Dec 03. No losses reported. Cement returns on surface and production casings. No wellbore issues evident. Upper perf at 634.4 MASL

Table 1 Continued.

Well Location	Spud date/FDD/On Production	Surface Casing (m)	Total Depth (m)	Perforation Depths (m) and Dates	Fracture Depths (m) and Dates	Comments
00/04-11-027-22W4	29 Oct 97 30 Oct 97 10 Jun 98	43.0	780.0	669.0 – 672.0 / 17 Nov 97 616.5 – 619 5	669.0 – 672.0 / 24 Nov 97	Lost circulation reported at 12 to 31 metres in overburden due to gravel. Lost circulation material (bentonite and lime) was pumped to regain circulation. Control regained at 43.0 m, and surface casing set. Cement returns on production and surface casings. Upper perf at 218.2 MASL
02/04-11-027-22W4	21 Jan 04 21 Jan 04 19 Nov 04	42.7	504.0	Following perfs on 22 Apr 04 190.5 – 191.5, 192.4 – 193.1 208.7 – 209.7, 212.1 – 214.1 248.1 – 251.1, 302.5 – 303.5 308.4 – 309.4, 332.3 – 333.3 334.9 – 335.9, 372.5 – 373.5	Perfs from 190.5 to 373.5 individually frac'd on 5 Jun 04	No lost circulation reported. Cement returns on surface and production casings. No apparent well bore issues. Upper perf at 644.3 MASL
00/07-11-027-22W4 Production history: Production from lower perfs on 03. Other perfs have not produced to date.	3 Dec 02 8 Dec 02 22 May 03	148.6	1286.0	1188.5 – 1191.5/16 Jan 03 636.0 – 639.0/20 Apr 04 604.0 – 607.0/ 8 Jun 04 Following perfs on 13 Apr 05 342.8 – 343.8, 337.0 – 338.0 299.4 – 300.4, 296.4 – 297.4 272.7 – 273.7, 211.9 – 214.9 188.0 – 189.0, 175.9 – 177.9	1188.5 – 1191.5/11 Feb 03 636.0 – 639.0/24 May 04 604.0 – 607.0/ 26 Jun 04 Perfs from 175.9 to 343.8 frac'd on 2 May 05	Lower zones abandoned with bridge plug capped with cement at 1172 – 1182 on 20 Apr 04, and a bridge plug at1137.3 to 1140.8 on 22 Jun 05. No lost circulation reported. Cement returns on surface and production casings. No apparent well bore issues. Upper perf at 622.6 MASL
00/05-14-027-22W4 Fluid level in well reached 80 mKB during shut-in prior to sampling upper perfs. There was a packer at 172.0 m in hole at the time. 4 m3 water reported recovered from well.	13 Oct 03 13 Oct 03 Not on production	85.0	467.0	Following perfs on 15 Feb 04 418.9 – 419.9, 415.5 – 416.5 374.3 – 375.3, 371.7 – 372.7 358.4 – 359.4, 354.5 – 355.5 347.8 – 348.8, 342.6 – 343.6 284.9 – 286.9, 283.5 – 284.5 259.3 – 260.3, 248.0 – 250.0 244.9 – 245.9, 238.6 – 239.6 234.6 - 235.6, 228.7 – 230.7 222.0 – 223.0, 220.1 0 221.1 186.1 - 187.1, 177.1 – 178.1 141.4 – 142.4, 133.0 – 134.0 131.7 – 132.7, 125.5 – 126.5	Perfs from 125.5 to 419.9 frac'd on 2 Mar 04	Cement squeezed top 4 perfs on 12 Jul 04: 141.4 – 142.4, 133.0 – 134.0 131.7 – 132.7, 125.5 – 126.5 Cement plug from 17.0 to 425.0 m on 10 Oct 04. Cement returns on surface and production casing. Cement top inside surface casing confirmed with log. No apparent wellbore issues. Upper perf at 743.0 MASL

4 LAURIDSEN WATER WELL INFORMATION

4.1 Initiation of Well Complaint

The water well complaint by Ms. Lauridsen was originally made to EnCana about a concern related to methane in her well. In December of 2005 AENV staff initiated the investigative process.

4.2 Well Design, Construction and Maintenance

The water well drilling report for the Lauridsen Water Well, available through the AENV Groundwater Information Centre (GIC) (Well ID # 0123545), is included in Appendix B. This drilling report was mistakenly labelled SE-11-027-22W4 rather than SW-11-027-22W4. The well was constructed (December 14, 1977) by Lin Murray Drilling for the landowner at the time (J. Patterson). The lithology log is not very detailed and coal is not noted in the log. Based on the total depth of this well and surrounding well information, this well is likely completed in coal. The borehole was drilled to total depth (61.0 m) and a 140 mm diameter casing was inserted with torch-cut perforations from 36.6 to 61.0 m. A packer was put on the casing and a cement seal was placed from 15.2 to 30.5 m. The seal did not extend to surface. It is not clear if the existing seal provides adequate protection against contamination of water from ground surface entering the well. The casing extends to surface and an adjacent pit contains the pressure tank & controls, a cistern and a transfer pump. The cistern is used to provide storage because the well provides limited yield.

Notes in the AENV complaint file indicate that the well did not have regular shock chlorination. Total Coliform bacteria were detected in three separate analyses (Nov 2003, August 2004 and September 2006). Total coliforms were too numerous to count (TNTC) in the first two analyses. These bacterial results could indicate a poor well seal. No information on subsequent well maintenance is contained in the file, but the most recent sampling in June 2007 did not detect coliform bacteria. Bacterial analyses (December 2006 and June 2007) indicate that iron related bacteria (IRB) and sulphur reducing bacteria (SRB) are present in the well water. A downhole camera inspection of the well in March 2006 by Gerritsen Drilling Ltd. found holes corroded through the casing in the torch-perforated section. The well was flushed and a PVC well liner was installed inside the existing casing.

4.3 Stratigraphy

No accurate lithology records exist for the Lauridsen well. Several good quality drilling report are available for wells drilled in the next quarter section to the west. A new AENV groundwater observation well network (GOWN) well (installed in March 2007) is approximately 800 m to the northwest also provides detailed lithology information.

A geologic cross section through the Lauridsen well was constructed using lithology information from the Kenny well, the Signer well, a GOWN well and geophysical logs from the EnCana CBM wells 05-14-027-22 W4M, 15-10-027-22 W4M and 07-11-027-22 W4M (Figure 2). The contour interval on this map is 2 m and the colour shading visually denotes elevation.

Figure 2 Map showing location of cross-section. DEM image supplied by EnCana.

The cross-section (Figure 3) illustrates that the Lauridsen well is completed in coal zones of the Upper Horseshoe Canyon Formation. The groundwater bearing zone is likely the Weaver coal zone at a depth of about 51m (744 MASL). The EnCana 07-11-027-22W4M CBM well, located 320 m to the east of the Lauridsen well, has production casing perforations starting at 175.9m (619 MASL) which indicates a vertical separation of 125 m) between the water-bearing zone of the Lauridsen well and the upper perforations of the CBM well. A saturated sand and gravely

sand layer was encountered in the residential water wells and in the GOWN well at a depth of about 2 to 5 m. This gravely sand layer is a potential pathway for surface water to enter water wells if an adequate seal is not in place in the water wells.

4.4 Hydrogeology

4.4.1 <u>General Groundwater flow directions</u>

Local and very shallow groundwater flow may be controlled by the unconfined sand and sandy gravel layer encountered at a depth of 2 to 5 m in several nearby water wells. The shallow flow is likely controlled by topography and flow directions are likely from the Lauridsen well site to the Rosebud River to the north (Borneuf 1972). In the Lauridsen well, the deeper confined groundwater flow within the upper Horseshoe Canyon bedrock is part of the regional groundwater flow system flow directed to the northeast (Bachu and Michael 2002).

4.4.2 Vertical Hydraulic Gradient

An estimation was made of the vertical hydraulic gradient between the coal zones of the Lauridsen well and that of nearest EnCana CBM well with pressure data (02/14-02-027-22 W4M about 1 km to the south) using the following:

Depth of coal zone in Lauridsen well = 744 MASL.

Depth of upper coal zone in EnCana CBM well 00/07-11-027-22W4M = 619 MASL.

The head of water in the Lauridsen well = 787 MASL.

A shut-in pressure of 422.9 KPa was measured in the Garden Plains Coal member of EnCana CBM well 02/14-02-027-22W4M (equivalent to 43.2 m of water). Therefore the equivalent head of water in the CBM well = 662.2 MASL assuming density of 1000 kg/m³ (fresh water).

The vertical gradient is estimated from = $\Delta h/\Delta I = (787-662.2)/(744-619) = 1.0$. This suggests a large downward vertical gradient. If these coal zones become connected, groundwater would flow down into the CBM well. The rate of flow however, is going to be controlled by the hydraulic conductivity of the flow path. For example, if a fracture connects a CBM well to an overlying aquifer, the amount of groundwater produced could be significant, as determined by the fracture aperture.

4.4.3 <u>Hydraulic Conductivity</u>

Two pumping tests have been performed on the Lauridsen Well. A 120 minute pumping test followed by a 120 minute recovery test was done December 6, 2006 by M&M Drilling limited. A second 81 minute pumping test was performed by AENV on June 5, 2007 as part of a sampling trip. No analysis of this data was found in the AENV file. The aquifer test data was analysed by ARC for this report using AQTESOLV, Version 3.50 Professional, Aquifer Test Design and Analysis Computer Software (1996-2003 HydroSOLVE Inc.). This software provides analytical solutions for evaluating parameters in confined, unconfined, leaky, or fractured aquifer systems, and allows evaluation of the aquifer test data by visual curve matching to select the most appropriate interpretation to represent aquifer conditions at the site.

The Theis (1935) confined aquifer solutions were used to solve the drawdown and recovery portions of the pumping tests. An average apparent transmissivity of $1.2E-4 \text{ m}^2/\text{min}$ (0.17)

m²/day) was calculated. This value suggests that the aquifer has low to moderate transmissivity. The raw data and graphical solutions are included in Appendix C. No storativity value can be determined because it is not possible to calculate from water level measurements taken in a well that is being pumped. To calculate a storativity, water level measurements must be made in a non-pumping well in a well located a short distance from the pumping well. A storativity value of 0.005 can be estimated for this bedrock aquifer based on values reported in the literature (Freeze and Cherry 1979). The transmissivity and storativity can be used to predict the drawdown in water levels caused by pumping of the Lauridsen well.

4.4.4 <u>Water levels and methane saturation</u>

Static water levels from the Lauridsen water well have been variable (Table 2). The maximum difference in water levels is 2.3 m which corresponds to a pressure difference of 0.22 Atm (3.3 PSI). A drop in pressure is expected to decrease the solubility of methane in the water and cause an increase in the amount of methane coming out of the water. This is similar to the case where pressure is decreased in a carbonated drink (by opening the top) and CO_2 bubbles out of solution. An estimation of the concentration of methane in water (in the Lauridsen Well) at saturation can be done using the head (height) of water above the coal zone and the Henry's Law equilibrium equation:

Head of water above coal zone at the highest static water level = 42.7 m or 4.12 Atm

Head of water above coal zone at the lowest static water level = 40.4 m or 3.90 Atm

Henry's constant for methane = 1.4×10^{-3} Moles/Atm (at 298.15 °K)

A temperature correction needs to be done to the Henry's constant to account for the observed temperature of 285.15 °K (12 °C) in the Lauridsen well:

Henry's constant for methane in water at $12 \degree C = 1.1 \times 10^{-3}$ Moles/Atm

Therefore, based on this equation, the concentration of methane in water is calculated to be 4.51×10^{-3} Moles/kg of water at saturation for the highest static water level and 4.27×10^{-3} Moles/kg of water at saturation for the lowest static water level.

This could explain an increase in the amount of methane coming out of the water. However, it does not explain the source of the methane.

Date	Static Water Level (m TOC)
Dec 14, 1977	9.14
Nov 26, 2003	10.6
Aug 13, 2004	9.00
Dec 6, 2006	8.30

Table 2 Static water levels in the Lauridsen well.

4.4.5 Potential for Methane Gas Migration

In order to estimate methane gas migration potential from an active CBM site to an overlying water supply aquifer, an assessment of the forces controlling the methane gas bubble migration is helpful. If an aquifer overlying a CBM zone was connected to the CBM zone through and induced fracture (from well stimulation) methane bubbles would tend to rise in the fracture due to buoyancy forces. Groundwater flow downward in the fracture would tend to counteract the buoyancy force and prevent the bubble from rising. Appendix D provides a discussion on how those forces are determined and presents simplified calculations (personal communication with Dr. J, Jones, PhD., University of Waterloo) that determine what kinds of flow conditions prevent methane gas bubble migration into an overlying water supply.

An example of the application of this approach for the case of an induced fracture connecting a CMB zone with an overlying aquifer (e.g. either in the geological medium or in a casing annulus) provides some estimates of groundwater flow in the fractures (under the observed gradients at the site) were compared to the terminal velocity (maximum velocity the bubble can reach given the density and viscosity of the fluids involved) of methane bubbles. For a 100 μ m fracture, the flow velocity in the aperture would stop a methane bubble of 245 μ m or less from rising into an overlying aquifer. In coal fracturing operation the intended fracture apertures are in the order of 1000 μ m (1 mm) (personal communication with Paul Smolarchuk, Canadian Spirit Energy). The groundwater flow velocity in a 1 mm fracture would stop a bubble of 2.5 mm or less from rising. This kind of assessment suggests that if an induced connection existed between the CBM well and the Lauridsen water well, methane bubbles would not tend to rise in a fracture because of the downward groundwater flow based on the hydraulic gradient estimated for the local area.

4.5 Water and Gas Chemistry

In this section ARC compiles, reviews and assesses water and gas chemistry data from the AENV and AEUB files (Lauridsen well complaint file and energy well data) and additional data from D35 water well testing in the area (collected under AEUB Directive 35). Data from D35 testing was provided by AENV and from EnCana's consultant (WorleyParsons Komex). The chemistry from one hundred and forty five (145) water well tests from a radius of approximately 10 km from the Lauridsen well have become available from the new AENV database and are compared here with the Lauridsen water well and the CBM wells. Of these new well results, 41 have free gas analyses and/or isotope geochemistry. An analysis of this new chemistry data is organized into major ion chemistry, gas chemistry and isotope geochemistry.

4.5.1 Historical Major Ion and Bacteria Chemistry Prior to Complaint

Three historical water quality analyses are available for the Lauridsen water well prior to the initiation of the complaint (Table 2). Copies of the analyses are included in Appendix E. The January 31, 1983, November 26, 2003 and August 13, 2004 samples (analyzed by ARC

Vegreville, WSH Labs and WSH Labs, respectively) have routine potability analyses with ion balances within 2.5%. This is an acceptable lab QA/QC. It is not possible for ARC to comment on the field QA/QC as this type of information was not available. All three analyses show the Lauridsen well exceeds the aesthetic objectives (set by the Summary Guidelines for Canadian Drinking Water Quality set by Health Canada 2007) for total dissolved solids (TDS), sodium and iron. Sodium levels in the well (about 450 mg/L) exceed the 200 mg/L guideline and may be a concern for people on sodium reduced diets. In addition, the aesthetic objectives for pH is exceeded in the January 31, 1983 analysis, the aesthetic objectives for chloride is exceeded in the January 31, 1983 analysis and the maximum acceptable concentration for fluoride is exceeded in the November 26, 2003 and August 13, 2004 analyses. The maximum acceptable concentration of total coliforms was exceeded in the November 26, 2003 and August 13, 2004 analyses, with concentrations too numerous to count (TNTC). More recent sampling of this well (since December 2006) showed no coliform bacteria.

4.5.2 Major Ions, Metals and Bacterial Chemistry

In addition to the historic water analysis from the Lauridsen well, several new water analyses were performed (Table 3). Analyses were from AENV sampling and WhorlyParsons Komex reports (2006 and 2007). These routine potability analyses have ion balances of 10% (which is an acceptable value) except for the June 5, 2007 analysis which has an ion balance difference of 10.8%. This ion balance is outside of the generally acceptable range. The analyses show the Lauridsen well consistently exceeds the aesthetic objectives for total dissolved solids (TDS) and sodium. As well, the pH is high and the aesthetic objective is often exceeded. The maximum acceptable concentrations for fluoride have sometimes been exceeded. One analysis shows the presence of total coliform bacteria in exceedence of the maximum acceptable concentration. Copies of the analyses are included in Appendix E.

The major ion chemistry of the D35 water wells, the Lauridsen well and the GOWN wells is presented on Figure 4. There is a strong positive correlation of specific water types in the area, namely sodium-bicarbonate (Na-HCO₃) and sodium-bicarbonate-chloride (Na-HCO₃-Cl) type waters, with the presence of methane in the water (shown in Figure 4). The Lauridsen water well falls into this group. It is reported that in the reducing conditions, found where methane occurs in coalbed zones, it is expected that biochemical reduction of dissolved sulphate occurs, causing precipitation of sulphides, resulting in depleted dissolved sulphate content. Bicarbonate, on the other hand, tends to be enriched as a result of carbonate dissolution by oxygenated recharge water and by sulphate reduction methane production (fermentation). Calcium and magnesium tend to be depleted by inorganic precipitation of calcite due to reduced solubility in the presence of elevated bicarbonate (Van Voast 2003).

The major ion chemistry is presented on Schoeller plots (Figure 5 and 6). Most of the wells with methane have depleted calcium, magnesium and sulphate. Again, these wells show the water wells with methane tends to have sodium-bicarbonate (Na-HCO3) or sodium-bicarbonate-chloride (Na-HCO3-Cl) type waters. The Lauridsen water well falls into this group.

Table 3 Summary of Chemical Analyses for the Lauridsen Water Well

Parameter	Units	Lauridsen V	/ell																									GCDWQ Recom	mended Limit
			00 N 00		F 1. 00	E 1. 00	F 1. 00	5 1	5 1 00	F 1. 00	5 1	47 5 4 44	47 5 4 66	17 5 1 00	47.5 4 00									0 D 00	5 J . 07		1		
Date	dd/mm/yyyy	31-Jan-83	26-NOV-03	13-Aug-04	5-Jan-06	5-Jan-06	5-Jan-06	5-Jan-06	5-Jan-06	5-Jan-06	5-Jan-06	17-Feb-06	17-Feb-06	17-Feb-06	17-Feb-06	12-Apr-06	12-Apr-06	13-Apr-06	13-Apr-06	8-Sep-06	8-Sep-06	8-Sep-06	6-Dec-06	6-Dec-06	5-JUN-07	5-JUN-07 5-	-Jun-07	AO	MAC
Logation	Invitin		Hudropt	Wall	Hudrant	11.15 Woll	Moll	Hot water teak	House Tep	13.30	Lot water tenk	9.00 Woll	Mall	9.30 Woll	0.45 Woll	Wall	Woll	Poforo	Aftor	Woll	Moll	Moll	Woll	10.30 Woll	13.30 Woll	13.30 Woll	Woll		
Lobaraton		ARCHOR	wei	Well	Movicom	Mayyam	Moxyom	Morror	Movyom	AL 6	Moverom	ALS	ALS	Moxyom	DDD	ALS	ALS	Nonwort	Norwort	ALS	AL C	ALC	ALS	LlofC	ALS	ARC	U of C		
Laboratory	unito	87	9 01	0.40	WaxAam	IVIAXAIII	Waxam	WaxAam	0 42	ALS	IVIAXAIII	ALS	ALS 0.0	9.4.4	FBR	ALO	ALS 9.4	NUIWESI	NUIWESI	86	86	ALG	ALG	0000	87	ARG U	0000	6 E 9 E	
PH FC	units uS/om	1026	1942	1664					1910	1760		1750	1770	1950		1910	1960			1920	1900		1920		1740			0.5 = 0.5	
TDS enlaulated	po/cm	1126	1045	1078					1070	1050		997	1010	1050		1000	1010			1040	1060		1050		1090			500	
Total Ally as CaCO2	mg/L	074	700	74.4					745	700		331	700	74.0		000	000			747	747		754		1030			500	
Total Alk. as CaCO3	mg/L	0/1	706	/14					/15	/30		724	732	/10		003	692			102	422		/51		002				
Sodium	mg/L	455	460	453					441	424		393	396	431		407	407			403	432		403		517			200	
Calaium	mg/L	0.9	0.6	1.5					0.8	0.8		0.8	0.9	0.6		1.0	1.0			0.8	0.0		1.5		0.9				
Magnasium	mg/L	<1	4.0	0.3					3.0	3.5		3.5	3.0	3.4		3.0	3.2			1.0	1.0		1.3		<0.5				
Iron	mg/L	2.04	0.647	1 49					0.4	0.4		0.4	0.4	0.01		0.0	0.5			0.5	0.5		0.2		0.17			0.2	
lion (tetel)	mg/L	2.04	0.047	1.40					0.00	0.02				0.01		4.07	4.07						0.05		0.17			0.5	
Mongonaco	mg/L		0.010	0.014					0.006	-0.01				-0.004		4.67	4.67						1.79		0.321			0.05	
Manganasa (total)	mg/L		0.010	0.014					0.000	<0.01				<0.004		0.020	0.020						<0.01		0.004			0.05	
Chlorido	mg/L	260	200	196					196	190		160	162	190		177	177			202	105		104		172			250	
Eluorido	mg/L	1 200	200	1 59					1 72	102		102	103	1 61		177	177			203	195		1.4		175			230	1.5
Culabata	mg/L	1.30	1.7	1.36					0.7	1.5		2.5		1.01		4.5	4.2				4.0		1.4					500	1.5
Corbonato	mg/L	<0	4	<0.6					3.7	3		2.5	2.2	3.3		1.5	1.3			<0.5	1.3		3.4		0.0			500	
Ricorbonate	mg/L	766	961	946					950	200		~	< <u>0</u>	947		<.J	21			29	23		971		744				
NO2 on N	mg/L	700	1.2	-0.2					-0.002	-0.05		-0.05	-0.05	-0.002		-0.05	-0.05			-0.05	-0.05		-0.05		-0.0E				10
NO2 as N	mg/L	<0.05	<0.3	<0.2					<0.003	0.08		<0.05	<0.05	<0.003		<0.05	<0.05			<0.05	<0.05		<0.05		<0.05				1
NO2+NO3 as N	mg/L	<0.05	1.2	<0.2					<0.003	0.00		<0.05	<0.05	<0.003		<0.05	<0.05			<0.05	<0.05		<0.03		<0.03				10
Ion Balance %	%	40.00	102	103					98.0	94.4		90.7	Q1.0	97.0		96.8	95.1			87.8	95.3		86.8		124				10
ion Balance /c	70	00	102	100					00.0	01.1		00.1	01.0	01.0		00.0	00.1			07.0	00.0		00.0						
Bacteria																													
Total Coliforms	cfu/100mL		TNTC	TNTC																			<1						0
Total Coliforms	mpn/100mL																				1				<1				0
Escherichia Coli	cfu/100mL		0	0																			<1						0
Escherichia Coli	mpn/100mL																				<1				<1				0
S Reducing Bacteria	cfu/mL														<100								700000		700000				
S Reducing Bacteria	MPN/mL											0.4	0.9																
Iron Related Bacteria	cfu/mL											<10	<10		10								9000		2300				
Dissolved Hydrosorbons																													
Benzene	ma/l								<0.0004	<0.0005						<0.0005	<0.0005									<0.0001			0.005
Toluene	mg/L								<0.0004	<0.0005						0.0086	0.0078									<0.0001		0.024	0.000
EthylBenzene	mg/L								<0.0004	<0.0005						<0.0000	<0.0005									<0.0001		0.0024	
Xvlenes	mg/L								<0.0004	<0.0005						<0.0005	<0.0005									<0.0001		0.3	
F1(C6-C10) - BTEX	ma/L								<0.1	<0.1																<0.01			
F2 (C10-C16)	ma/L																									< 0.05			
F3(C16-C34)	mg/L																									< 0.02			
F4(C34-C50)	mg/L																									<0.02			
Dissolved Gas Analysis																													
Nitrogen	mg/L																									12.70			
Carbon Dioxide	mg/L																			<1	<1					5.93			
Oxygen	mg/L																									0.53			
Methane	µg/L															42400	35780	42800	66300	39000	45000	<5			33000	31900			
Ethane	µg/L																									3.21			
Piopane	µg/L																									<0.01			
i Putono	µg/L																									<0.01			
δ13C Methane	% PDB																									~0.01	-62.5		
0150 Weathing	700 T D D																										-02.5		
Free Gas Analysis																													
Nitrogen	ppm				284800	207000	173800	199500			183300												110000			77600			
Carbon Dioxide	ppm				3800	3000	2800	11900			12400												1600			1910			
Oxygen	ppm				52400	54000	47000	23200			16000												17000			9870			
Methane	ppm				659000	736000	776400	765100		860000	788100												880000			979000			
Ethane	ppm				31	40	43	51			54												<5			18.40			
Propane	ppm				<1	<1	<1	<1			<1												<5			< 0.05			
n-Butane	ppm																						<5			< 0.05			
i-Butane	ppm																						<5			< 0.05			
ō13C CO2	‰ PDB																							-1.0			1.9		
õ13C Methane	‰ PDB																							-62.8			-63.3		
õ13C Ethane	‰ PDB																							nd			nd		
õ13C Propane	% PDB																							nd			nd		
õ13C n-Butane	% PDB																							nd			nd		
õ13C i-Butane	% PDB																							nd			nd		
GCDWQ - Health Canad	a Guidelines fo	r Canadian E	vrinking Wate	r Quality (20	U7)																								
AU - Aesthetic objective																													
MAC - Maximum accepta	able concentrat	ion																											
nu - nu uelected by gas	circinatograph	iy so not run i	ior isotopes																										
TNTC - Too numerous to	o count																												
Bold font denotes evces	edence of GCD	WQ limit																											

Figure 4. Piper plot of water chemistry from the Lauridsen well, Surrounding D35 water wells and the GOWN wells.

Figure 5 Schoeller plot of water wells with methane present.

Figure 6 Schoeller plot of water wells with no methane.

4.5.3 Dissolved Organic Chemistry

An analysis for EPA volatile priority pollutants and extractable priority pollutants and CCME hydrocarbons (F1234) are available for the Lauridsen well (Table 3 and Appendix E). All volatile and extractable organic compounds were below the analytical detection limit with the exception of four compounds not expected to be related to CBM activities. These compounds are 2-Methyl-2-Propanol (1 μ g/l), an alcohol used as is used as a solvent, and three different phthalates (Bis (2-ethylhexyl) phthalate (1.6 μ g/l), Butylbenzylphalate (0.1 μ g/l) and Di-nbutylphthalate (0.3 μ g/l)) all plasticizers used in PVC plastic (Grant Prill, ARC, personal communication). A likely source for latter compound is new plastic tubing used during sampling. Several BTEX and F1-F4 analyses were done on the Lauridsen well (Table 3). All BETX and F1234 analyses were below detection limit. No Canadian Drinking Water Guideline limits have been exceeded for EPA priority pollutants or CCME hydrocarbons.

Several dissolved methane analyses were available for the Lauridsen well with concentrations ranging from 35,780 to 66,300 μ g/l. One high precision (method detection limit = 0.01 μ g/L) dissolved gas analysis was performed on the Lauridsen well (Table 3) with methane (31,900 μ g/l) and a small amount of ethane (3.21 μ g/l) detected.

4.5.4 <u>Atmospheric Elements and Hydrocarbon Gas Chemistry</u>

Several free gas analysis are available for the Lauridsen well (Table 3). The samples appear to be free from atmospheric contamination (based on low oxygen and nitrogen values). The gas samples contain 659,000 to 979,000 ppm methane and 18.4 to 54 ppm ethane. C3 and higher gases were below the detection limit (e.g. 0.05 ppm in the June 2007 analysis). In addition to the Lauridsen well, 36 nearby water wells from the D35 database and 3 GOWN wells have gas chemistry. Methane and ethane concentration are similar to those measured in the Lauridsen well. A more rigorous, statistical approach to differentiate gas characteristics is presented at the end of this section.

To address the concern that the nitrogen fracturing could have affected the Lauridsen water well, the nitrogen concentration of the free gas in the Lauridsen well was compared to concentrations in D35 wells, the GOWN wells, several CBM wells and conventional gas wells. The Lauridsen well analyses range from 7.8 to 28.4 % nitrogen. The variability is likely due to the location (well, hydrant, house tap or hot water tank) that the sample was taken from (and possibly to sampling procedure variability between different sampling events or different field personnel. A histogram of the nitrogen gas content from D35 water wells (Figure 7) shows two groups. One group falls in a range of 5 to 30% nitrogen while the other group is greater than 50% nitrogen. The group with greater than 50% nitrogen tends also to have lower methane concentrations and may be indicative of atmospheric contamination in the sample. Nitrogen levels could also be higher due to another factor such as breathing wells (wells that take in air during atmospheric pressure highs and expel air with depleted oxygen content during atmospheric pressure lows) which have been noted in Alberta (Hydrogeological Consultants Ltd

1999), or to aquifer connection to the atmosphere at some distant point from the well (such as an aquifer outcrop on a valley wall). Nitrogen concentrations in energy wells are less than 15%. The Lauridsen well nitrogen analyses fall within the normal range observed for the D35 wells with no air contamination.

Figure 7 Histogram of nitrogen concentrations in water wells and energy wells.

4.5.5 <u>Stable Carbon Isotope Chemistry on Hydrocarbon Gas</u>

Stable carbon isotopes sometimes can be used to help in the identification of the origin of gas in water wells. Two carbon isotope analyses on hydrocarbon gas were available for the Lauridsen well (Table 3). In addition to the Lauridsen well, 27 nearby water wells from the D35 database and 3 GOWN wells have carbon isotope analyses on hydrocarbon gases and carbon dioxide. Carbon isotope analyses were available for the EnCana CBM wells located in 08-12-027-22 W4M, 03-14-027-22 W4M, 07-13-027-22 W4M, 06-24-027-22 W4M and 14-12-027-22 W4M. Carbon isotope analyses were also available for the EnCana conventional gas wells located in 08-12-027-22 W4M.

Isotopic results from the Lauridsen well and the GOWN wells in Rosebud and Redland were performed by the Applied Geochemistry group at the University of Calgary using a gas chromatograph coupled to a Finnigan MAT delta plus XL mass spectrometer (3 kV). This analytical setup requires at least 500 ppm methane, 300 ppm ethane and 200 ppm propane in the injected gas to stay in the linear range of the mass spectrometer (Dr. Bernhard Mayer, personal communication). The reported δ^{13} C values have a precision of +-0.5 per mil for both

free and dissolved gases (He headspace equilibration technique). The analytical techniques for gas isotope results the D35 results are not known.

Some of the energy wells tested have questionable quality data. The qualitative QA/QC assessment of the EnCana well data is presented in Table 4. The GC analysis for 02/08-12 and 00/08-12 appears to be representative of CBM and conventional gas respectively, but the isotope values of the methane are not. It appears that the samples may have got mixed up and the CBM gas sample was labelled as the conventional gas sample and vice versa. The sample from 00/03-14 appears contaminated by air, based on the composition being predominantly nitrogen and oxygen, with hydrocarbons below the detection limit. These analyses were not used in the ARC evaluation.

The new deep GOWN (Groundwater Observation Well Network) well in Rosebud, completed in the Drumheller coals, is representative of shallow (140 m) CBM in the area. This well has no water and has flowing gas. Several of the CBM wells are representative of CBM gas compositions. However, deeper CBM well gas carbon isotopes are not well represented in the area due to the problems noted above. Data from CBM wells from Township 45, Ranges 20 and 21 was used to compare the Lauridsen well carbon isotopes to typical deeper CBM well carbon isotopes.

Well Name	Туре	GC	Isotopes	Data Quality
GOWN Rosebud #1	CBM	Yes	Yes	Acceptable
SW-18-027-21W4M				
02/04-44-027-22W4M	CBM	Yes	No	Acceptable
02/08-12-027-22W4M	CBM	Yes	Yes	Isotope results may be from 00/08-12
				(lab error?)
00/03-14-027-22W4M	CBM	Yes	Yes	Air contaminated sample
00/05-14-027-22W4M	CBM	Yes	No	Acceptable
00/06-24-027-22W4M	CBM	Yes	No	Acceptable
00/14-10-027-22W4M	Conv.	Yes	No	Acceptable
00/15-10-027-22W4M	Conv.	Yes	No	Acceptable
02/04-11-027-22W4M	Conv.	Yes	No	Acceptable
00/07-11-027-22W4M	Conv.	Yes	No	Acceptable
00/08-12-027-22W4M	Conv.	Yes	Yes	Isotope results may be from 00/08-12
				(lab error?)
00/14-12-027-22W4M	Conv.	Yes	Yes	Acceptable
00/07-13-027-22W4M	Conv.	Yes	No	Acceptable

Table 4 Energy (and GOWN) well QA/QC data quality.

A histogram of the carbon isotope values of methane from the Lauridsen water well, the surrounding D35 water wells, CBM wells and conventional gas is presented in Figure 8. The methane values for the Lauridsen well fall within the general peak for methane values. A statistical analysis of the mean isotopic compositions is presented at the end of this section. From a visual observation of the plot, it is observed that the CBM wells have a less depleted (less negative) methane isotope signature, while the one conventional gas signature is even less depleted. The D35 wells and Lauridsen well have methane isotope signatures that fall within the range of -60 to -80, typical of biogenic methane (Schoell 1980; Whiticar et al. 1986; Rice 1993).

Figure 8 Histogram of the carbon isotope values of methane in all water wells and Energy wells.

A histogram of the carbon isotope values of ethane from the D35 water wells, the GOWN well, CBM wells and conventional gas is presented in Figure 9. The Lauridsen well and two of the GOWN wells do not contain enough ethane to get a meaningful ethane carbon isotope signature (i.e. below the method detection limit) therefore they do not appear on the diagram. The CBM wells have ethane isotope signatures that fall within the general range for the surrounding D35 water wells. The conventional gas well (Viking Formation) has a much less depleted ethane isotope signature.

Figure 9 Histogram of the carbon isotope values of ethane in all water wells and energy wells

A plot of the methane concentration versus the methane carbon isotope signature ($\delta^{13}C_{Methane}$) is presented on Figure 10. Below the line at -60 ‰ typically represents a biogenic (bacterial) origin for methane (Schoell 1980 and 1983; Whiticar et al 1986; Rice 1993). The CBM well has a $\delta^{13}C_{Methane}$ value that is less enriched than the typical range of -60 to -80 ‰, typical of biogenic methane. This value represents a mixed thermogenic and biogenic origin. The water well data, including the Lauridsen well, all have $\delta^{13}C_{Methane}$ values that are clearly biogenic.

Figure 10 Methane concentration versus δ^{13} C of methane.

A plot of the ethane concentration versus the ethane carbon isotope signature ($\delta^{13}C_{Ethane}$) is presented on Figure 11. Most of the water wells have ethane concentrations below the lab detection limit (which was as high as 100 ppm for some analyses). The Lauridsen well has 39.6 ppm ethane (average of 6 analyses), which is below the method detection limit to run carbon isotopic analysis of ethane. Of the D35 wells with detectable ethane, concentrations are several times less than that observed in the CBM wells or the deep GOWN well in Rosebud. The $\delta^{13}C_{Ethane}$ values of the water wells are within the range of $\delta^{13}C_{Ethane}$ values observed in the CBM well and the GOWN well. The ethane concentration and isotopic signature of ethane from the conventional gas well is markedly different from the water wells and the CBM wells. A more rigorous statistical approach to mean isotope values is presented at the end of this section.

Figure 11 Ethane concentration versus $\delta^{13}C$ of ethane.

A plot of the methane carbon isotope signature ($\delta^{13}C_{Methane}$) versus the ethane carbon isotope signature ($\delta^{13}C_{Ethane}$) is presented on Figure 12. The Lauridsen well (and two of the GOWN wells) does not appear on this plot because ethane isotopes were below the method detection limit. The $\delta^{13}C_{Methane}$ values of the CBM wells, the deep GOWN well and the conventional gas well are less depleted than the water wells. The $\delta^{13}C_{Ethane}$ values of the CBM wells and the GOWN well are similar to the D35 water wells.

Figure 12 $\delta^{13}C$ Methane versus $\delta^{13}C$ Ethane.

A plot of the carbon isotopes of coexisting methane and CO_2 from water wells are presented on Figure 13. Lines of equal carbon isotope fractionation (α) between methane and CO_2 are shown. This line represents the isotopic difference between these coexisting pairs of carbon species (methane and carbon dioxide). Data above the α =1.055 line can be indicative of methane origination from the CO_2 reduction pathway while data below this line can be indicative of methane origination from the fermentation pathway (Whiticar et al. 1986). The data indicates that methane from the Lauridsen well and the majority of D35 well originates from the microbial reduction of CO_2 (i.e. biogenic origin).

Figure 13 δ^{13} C Methane versus δ^{13} C CO₂. The α value is a line of equal fractionation between methane and CO₂.

Both the hydrocarbon gas composition and the isotopic signatures can be modified by mixing between different sources of gases (such as biogenic methane with thermogenic methane). These hypothetical mixing curves can be calculated using the equations of Jenden et al. (1993) shown on Figure 14. The y-axis of this plot is the ratio of methane to all other hydrocarbon gases.

For this investigation three different end member gases were considered to be the most likely sources and to be mixed in varying ratios: the statistical average biogenic gas in the area, a gas with an isotopic signature similar to the Lauridsen well, and typical CBM gas.

The first mixing scenario was the average biogenic gas found in the D35 water well ([Methane=437104 ppm], $\delta^{13}C_{methane}$ =-68.7 ‰) mixed with a typical CBM gas ([Methane=876700 ppm], $\delta^{13}C_{methane}$ =-55.7 ‰). The second scenario was this same average methane concentration gas with a methane isotopic signature ($\delta^{13}C_{methane}$ =-63.5 ‰) chosen so the Lauridsen well would fall on the curve, mixed with the CBM gas. The tick marks on the curves represent mixtures of CBM gas with the gas from water wells, ranging from 0% to 100%

The Lauridsen well mixing curve 2 shows a possible <0.5% mix of the CBM member with a biogenic end-member (chosen to fall though the well). While this is possible, the gas composition and $\delta^{13}C_{methane}$ value of the Lauridsen well is not statistically any different from the average D35 water well (discussed below). A similar plot can be constructed for ethane. This plot is not shown as the Lauridsen well had ethane concentrations below the method detection limit for isotopic analysis.

Figure 14 Mixing plot of δ^{13} C of methane versus the methane/C2+ ratio. Data for the bacterial and thermogenic fields are from Faber and Stahl 1984.

A statistical analysis was performed on gas concentration and gas carbon isotope data. The concentration of methane, ethane and propane along with the carbon isotope values of methane and ethane from water wells containing methane were compared to the Lauridsen water well and the CBM wells (Table 5). Hydrocarbon gases were detected in 36 of 145 (25%) of the wells in the Rosebud and Redland area.

Student T-Tests were used to compare methane concentrations in the Lauridsen well with the surrounding D35 water wells. T-Tests are based on a t-distribution, which is similar to a normal distribution, but is dependent upon the number of samples measured. There is no significant difference between the mean methane concentrations in the Lauridsen well with that of the D35 water well (5% level of significance). This statistically validates the contention that the methane concentrations in the Lauridsen wells

Ethane was detected by gas chromatography in 10 of 145 (7%) wells tested. Ethane carbon isotopes were measured in 16 wells by mass spectrometry, a more sensitive technique. Of these ten wells, the average concentration was 619 ppm as compared to 3798 ppm in the CBM wells. Propane and butane were not detected (by gas chromatography) in any of the water wells as compared to 559 ppm and 351 respectively in the CBM wells. The propane and butane carbon isotopes were measured in two water wells. The method detection limit to run carbon isotopic analysis of methane, ethane and propane are 500, 300 and 200 ppm respectively at the University of Calgary and the University of Waterloo (personal communication with Dr. Bernhard Mayer, University of Calgary and Robert Drimmie, University of Waterloo). The method, and

therefore detection limit, used to determine methane, ethane, propane and butane isotopes in the D35 wells is not stated.

Student T-Tests were used to compare mean methane carbon isotope value in the Lauridsen well with the surrounding D35 water wells and the CBM wells. There is no significant difference between the mean methane carbon isotope values in the Lauridsen well with that of the D35 water well (5% level of significance). This statistically validates the observation that the carbon isotope value of the methane in the Lauridsen water well is the same as the methane isotope signature of the surrounding D35 water wells.

There is a statistically significant difference between the mean methane carbon isotope values in the D35 wells with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the methane in the CBM wells is less depleted than the methane isotope signature of the surrounding water wells.

There is a statistically significant difference between the mean methane carbon isotope values in the Lauridsen well with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the methane in the CBM wells is less depleted than the methane isotope signature of the Lauridsen well.

Student T-Tests were used to compare mean ethane carbon isotope value in the D35 water wells and the CBM wells. There is no statistically significant difference between the mean ethane carbon isotope values in the D35 wells with that of the CBM wells (5% level of significance). This statistically validates the observation that the carbon isotope values of the ethane in the CBM wells are the same as the ethane isotope signatures of the surrounding water wells. This does not indicate the D35 water wells have been impacted by ethane from CBM wells. The similarity between ethane isotope signatures is expected as both the CBM wells and the D35 water wells are completed in the same formation (but different coal members) in the area. No statistical comparisons can be made with the Lauridsen well because the ethane concentration was below the method detection limit for carbon isotopes.

Table 5. Statistical values and T-Tests of the gas and isotope data.

	D35 Water Wells								
	[Methane]	$\delta^{13}C$ Methane	$\delta^{13}C_{Ethane}$						
	(ppm)	(‰)	(‰)						
n	37	28	16						
Min	440	-79.20	-47.00						
Max	1000000	-60.00	-40.94						
Mean	554456	-68.63	-44.00						
Std.	355263	4.73	1.73						

Lauridsen Water Wells								
	[Methane]	$\delta^{13}C_{Methane}$	$\delta^{13}C_{Ethane}$					
	(ppm)	(‰)	(‰)					
n	8	2	0					
Min	659000	-63.30						
Max	979000	-62.80						
Mean	805450	-63.05						
Std.	98341	0.35						

CBM Wells									
	[Methane]	$\delta^{13}C_{Methane}$	$\delta^{13}C_{Ethane}$						
	(ppm)	(‰)	(‰)						
n	14	11	3						
Min	702700	-63.96	-45.72						
Max	979100	-56.44	-40.51						
Mean	889200	-60.09	-43.33						
Std.	113421	2.04	2.63						

T-Test	T-Test	Degees of Freedom	5% level of significance
Mean [Methane]			
D 35 and Lauriden	-1.966	43	significant difference
Mean $\delta^{13}C_{Methane}$			
D 35 and Lauridsen	-1.638	28	no significant difference
Mean $\delta^{13}C_{Ethane}$			
D 35 and Lauridsen			
Mean [Methane]			
D 35 and CBM Wells	-3.441	49	significant difference
Mean $\delta^{13}C_{Methane}$			
D 35 and CBM Wells	-5.738	37	significant difference
Mean $\delta^{13}C_{Ethane}$			
D 35 and CBM Wells	-0.573	17	no significant difference
Mean [Methane]			
Lauridsen and CBM Wells	-1.744	20	significant difference
Mean $\delta^{13}C_{Methane}$			
Lauridsen and CBM Wells	-1.975	11	significant difference
Mean $\delta^{13}C_{Ethane}$			
Lauridsen and CBM Wells			
5 CONCLUSIONS

The Alberta Research Council's review of the AENV Lauridsen complaint file and AEUB data, and our independent review of additional data and aspects of the complaint, provides the following conclusions:

- The Lauridsen water well is completed in the Upper Horseshoe Canyon Formation as are some of the upper perforations of the CBM wells. Local water wells appear to be predominantly producing water from the Carbon Thompson and Weaver coals of the Horseshoe Canyon Formation.
- In the Rosebud area, the deep GOWN well and CBM drilling and completions records indicate that the coals are not water saturated below the Weaver coal. Under natural conditions, flow between these coal zones is expected to be very limited.
- A local stress analysis indicates the most likely azimuth (orientation) of fractures and face cleats in the coal would be about 055° (Bachu and Michael 2002). Three energy wells line up with the Lauridsen well on this general orientation.
- Energy Wells in the vicinity (within 1.5 km) of the Lauridsen well have no apparent drilling and construction issues that would contribute to methane or degredation of water quality in the Lauridsen well.
- The CBM well 00/05-14-027-22 W4M, located about 2 km northwest of the Lauridsen well, had perforations and fracturing in the same aquifer that the Lauridsen well is completed. The connection between these wells has since been removed (cement squeezed) and it is unlikely that these short-lived perforations had any measurable effects on the Lauridsen well.
- Records in the AENV well complaint file indicate the Lauridsen well is not regularly shock chlorinated. Holes were observed in the casing of the well by a drilling contractor using a well camera. The 30 year old well casing is not in good condition.
- An estimate of downward vertical gradient between the Lauridsen well and the Horseshoe Canyon CBM zones is 1.0. This represents a large downward vertical gradient. If these two zones become connected, water would flow downwards into the CBM well rather than up into the Lauridsen.
- A theoretical evaluation of the potential migration of methane as bubbles from the CBM well to the Lauridsen well (through an induced fracture) suggests that the downward flow of groundwater in the fracture would stop the upward migration of methane bubbles.
- A 2.3 m fluctuation in static water level was observed in the Lauridsen well. The cause of this decrease is unknown but possible causes include groundwater resource extraction by the Lauridsen well or nearby users or from drought. This drop in water level, and corresponding drop in pressure on the coal zone, can be shown to contribute to the increase in amount of methane dissolved in the groundwater at saturation. This effect would be even greater during pumping of this well where the static water level drops by about 24 m.
- The water well major ion chemistry for the Lauridsen wells shows Na-HCO₃-Cl type water. The analyses show the Lauridsen well consistently exceeds the aesthetic

objectives for total dissolved solids (TDS) and sodium. As well, the pH is high and the aesthetic objective is often exceeded. This water chemistry is typical of water wells in the area. The maximum acceptable concentrations for fluoride have sometimes been exceeded. Three analyses shows the presence of total coliform bacteria in exceedence of the maximum acceptable concentration, with two analyses showing numbers too numerous to count.

- For all the D35 wells in the area sodium-bicarbonate (Na-HCO₃) and sodiumbicarbonate-chloride (Na-HCO₃-Cl) type waters are strongly associated with the presence of methane in the water. The Lauridsen water well chemistry is not unique. It, along with many other wells in the area, has Na-HCO₃-Cl type water.
- The methane carbon isotope values for the Lauridsen well fall within the general histogram peak for methane values for all D35 wells in the area. The CBM wells have a less depleted methane isotope signature.
- The ethane carbon isotope values for the CBM wells fall within the general histogram peak for ethane values for all D35 wells in the area.
- The CBM wells have δ¹³C methane values that are less depleted than the typical range (-60 to -80 ‰) for biogenic methane. This value represents a mixed thermogenic and biogenic origin.
- The water well data, including the Lauridsen well, all have δ^{13} C methane values that are clearly biogenic. This means the methane likely formed at a shallow depth.
- The δ¹³C ethane values of all the water wells are similar to the values of the CBM wells, but concentrations are lower (indicating a different origin or potential mixing, see next conclusion point).
- The hydrocarbon gas composition and isotopic values are modified by mixing between different sources of gases. For example, a hypothetical mixing of 4% CBM gas with a biogenic end-member could produce results similar to the Lauridsen well. While gas mixing is possible, the gas composition and δ¹³C_{methane} value of the Lauridsen well is not statistically any different from the average D35 water well in the area.
- Student T-Tests statistically validate the observation that the carbon isotope value of the methane in the Lauridsen water well is the same as the methane isotope signature of the surrounding D35 water wells.
- Student T-Tests statistically validate the observation that the carbon isotope values of the methane in the CBM wells is different than the methane isotope signature of the surrounding water wells.
- Student T-Tests statistically validate the observation that the carbon isotope value of the ethane in the CBM wells is the same as the ethane isotope signature of the surrounding D35 water wells. This does not indicate the D35 water wells have been impacted by ethane from CBM wells. The similarity between ethane isotope signatures is expected as both the CBM wells and the D35 water wells are completed in the same formation (but different coal members) in the area.

Overall Conclusion

• The Alberta Research Council's overall conclusion of the evidence from the review of the AENV and AEUB files, along with a new review and evaluation of addition data and aspects, is that energy development projects in the area most likely have not adversely affected Ms. Lauridsen's water well.

6 CLOSURE

This report details a thorough review of the AENV well complaint file for Ms. Lauridsen regarding Coal Bed Methane (CBM) and conventional gas activities undertaken by EnCana and the subsequent perceived decrease in water quality of the Lauridsen well.

This work was carried out in accordance with accepted hydrogeological practices.

Respectfully submitted, Alberta Research Council Permit to Practice P03619

Alexander R. Blyth, Ph.D., P. Geol. Research Hydrogeologist

7 REFERENCES

- Bachu, S., 1999, Flow systems in the Alberta Basin: Patterns, types and driving mechanisms. Bull. Canadian Petroleum Geology, v.47, no.4, p.455-474.
- Bachu, A. and Michael, K., 2002. Hydrogeology and Stress Regime of the Upper Cretaceous-Tertiary Coal-Bearing Strata in Alberta. EUB/AGS Earth Sciences Report 2002-04.
- Beaton, A., Paňa, C., Chen, D., Wynn, D. and Langenberg, C.W., 2002. Coal and coalbedmethane potential of the upper Cretaceous – Tertiary strata, Alberta Plains. Alberta Energy and Utilities Board, Alberta Geological Survey, Earth Sciences Report 2002-06.
- Binda, P.L., 1991. The Battle Formation: a lacustrine episode in the late Maastrichtian of western Canada: In: Aspects of nonmarine Cretaceous geology, N.J. Mateer and P.J. Chen (eds.), China Ocean Press, p. 202-217.
- Borneuf, D., 1972. Hydrogeology of the Drumheller Area, Alberta. Research Council of Alberta, Report 72-1.
- Coleman, D., Risatti, J. and Schoell, M., 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochimica et Cosmochimica Acta, Vol. 45, p. 1033-1037.
- Cooper, H.H. and C.E. Jacob, 1946. A generalized graphical method for evaluating formation constants and summarizing well field history, Am. Geophys. Union Trans., vol. 27, pp. 526-534.
- Decker, A.D., Klusman, R. and Horner, D.M., 1987. Geochemical techniques applied to the identification and disposal of connate coal water. Proceedings of the 1987 Coalbed Methane Symposium, Tuscaloosa, Alabama, p. 229-242.
- Demchuk, T.D. and L.V. Hills, 1991, A re-examination of the Paskapoo Formation in the central Alberta Plains: the designation of three new members; Bulletin of Canadian Petroleum Geology, v. 39, no. 3, p. 270–282.
- EnCana Corporation, 2007. Analytical and groundwater monitoring results, 16-36-32-26W4M, Torrington. Report to the Alberta Energy and utilities Board. July 24, 2007.
- Faber, E. and Stahl, W., 1984. Geochemical surface exploration for hydrocarbons in North Sea. The American Association of Petroleum Geologists Bulletin, Vol. 68, No. 3, p. 363-386.
- Freeze, A.R. and Cherry, J.A., 1979. Groundwater. Prentice-Hall Inc., Englewood Cliffs, N.J. 604 p.
- Health Canada, 2007. Summary of guidelines for Canadian drinking water quality.
- Hitchon, B., 1969a, Fluid flow in the Western Canada Sedimentary Basin: 1. Effect of topography. Water Resources Research, vol. 5, no. 1, pp. 186-195.
- Hitchon, B., 1969b, Fluid flow in the Western Canada Sedimentary Basin: 2. Effect of geology. Water Resources Research, vol. 5, no. 2, pp. 460-469.
- Hydrogeological Consultants Ltd., 1999. Water wells that breathe. Report to the Canadian Groundwater Association. August 11, 1999.
- Hydrogeological Consultants Ltd., 2005. Redland Area NE-10-027-22 W4M Sean Kenny Site Investigation. Consulting report to EnCana Corporation, January 2005.
- Hydrogeological Consultants Ltd., 2006. Redland Area 07-10-027-22 W4M Water well investigation. Consulting report to EnCana Corporation, January 2006.

- HydroSolve Inc. 1996-2003. AQTESOLV, Aquifer Test Design and Analysis computer software, Version 3.50 Professional.
- Jenden, P.D., Drazan, D.J. and Kaplan, I.R., 1993. Mixing of thermogenic natural gases in Northern Appalachian basin. The Americal Association of Petroleum Geologists Bulletin, V. 77, no. 6, pp. 980-998.
- Jerzykiewicz, T., 1997, Stratigraphic framework of the uppermost Cretaceous to Paleocene strata of the Alberta Basin; Geological Survey of Canada, Bulletin 510, 121 p.
- Macdonald, D.E., Ross, T.C., McCabe, P.J. and Bosman, A., 1987. An evaluation of the coal resources of the Belly River Group, to a depth of 400 m, in the Alberta Plains. Alberta Research Council, Open File Report 1987-8, 76 p.
- Mossop, G.D. and Shetsen, I. (compilers) 1994. Geological atlas of the Western Canada Sedimentary Basin. Calgary, Canadian Society of Petroleum Geologists and Alberta Research Council, 510 p.
- Parks, K.P. and Tóth, J., 1995. Field evidence for erosion-induced underpressuring in Upper Cretaceous and Tertiary strata, west central Alberta, Canada. Canadian Petroleum Geology Bulletin, v. 43, n. 3, p. 281-292.
- Rice, D.D., 1993. Composition and origins of coalbed gas. In: B.E. Law and D.D. Rice (eds.), Hydrocarbons from coal: AAPG Studies in Geology 38, p. 159-184.
- Schoell, M., 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta, Vol. 44, p. 649-661.
- Schoell, M., 1983. Genetic characterization of natural gases. American Association of Petroleum Geologists Bulletin, Vol. 67, No. 12, p. 2225-2238.
- Sweet, A.R. and D.R. Braman, 1992, The K-T boundary and contiguous strata in western Canada: interactions between paleoenvironments and palynological assemblages; Cretaceous Research, v. 13, p. 31–79.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.
- Van Voast, W., 2003. Geochemical signature of formation water associated with coalbed methane. American Association of Petroleum Geologists Bulletin, Vo. 87, No. 4, p. 667-676.
- Whiticar, M.J., Faber, E. and Schoell, M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – Isotopic evidence. Geochimica et Cosmochimica Acta, Vol. 50, p. 693-709.
- WhorlyParsons Komex, 2006. Report of the January and February 2006 Sampling Program at Valhalla Farms. Report for EnCana, March 30, 2006.
- WhorlyParsons Komex, 2006. Baseline Water Well Testing. Report for D35 testing of the Lauridsen well, January 16, 2007.

APPENDIX A

SUMMARY OF ENERGY WELL DRILLING AND COMPLETION DETAILS

Well info for Alberta Research Council request 20-Apr-2006

all wells within 1600m of La Well Head	Spud Date	Rig Release	Lost circulation	Surface Casing Depti	TD	Coment returns (surface casing)	Cement returns (prod casing)	Perf Count	Perf date	Perf top	Perf bottom	Frac Count	Frac Date	Frac Top	Frac Bottom	Frac fluid
100/07-11-027-22W4/00	07-Dec-02	09-Dec-02	(Y/N) N	(m) 144	1287	1.00	(m3)	11	13-Apr-05	342.8	(mKb) 343.8	2	24-May-04	(mKb) 636.0	(InKb) 639.0	NITRIFIED FOAM
									13-Apr-05 13-Apr-05	299.4	300.4 338.0		02-May-05	175.9	343,8	N2
									20-Apr-04	636.0	639.0					
									13-Apr-05	296.4	297.4					
									17-Jan-03	1188.5	1191.5					
									13-Apr-05	175.9	177.9					
					-				08-Jun-04 13-Apr-05	604.0 188.0	607.0 189.0	-				-
100/04-11-027-22W4/00	29-Det-97	30-Oct-97	N	20	771	0.7	· ·	2	17-Nov-97 27-Nov-97	669.0 616.5	672.0 619.5	1	24-Nov-97	669.0	672.0	N2
102/04-11-027-22W4/00	21-Jan-04	21-Jan-04	N	43	504	02	11	10	22-Apr-04 22-Apr-04	302.5 334.9	303 5 335 9	1	03-Jun-04	190.5	373.5	N2
									22-Apr-04	190.5	191 5					
									22-Apr-04 22-Apr-04	3/2.5	309.4					
									22-Apr-04	332.3	333.3					
									22-Apr-04	208.7	209.7					
									22-Apr-04 22-Apr-04	192.1 248.1	193.1 251.1					
100/14-02-027-22W4/00	28-Feb-95	03-Mar-95	N	45	756	0.02	2	2	29-Jul-95	615.0 664.0	618,0 668,0					
102/14-02-027-22\/4/00	07-Oct-03	07-Oct-03	N	43	472	0.2	1.5	13	11-Feb-04 11-Feb-04	331.1 305.6	332.1 307.5	1	27-Feb-04	162,9	372.7	N2
									11-Feb-04	302.1	303.1					
									11-Feb-04 11-Feb-04	214.3	217 3					
									11-Feb-04	333.3	334.3					
									11-Feb-04	193.6	201.4 196.6					
									11-Feb-04	254.2	255.2					
									11-Feb-04	162.9	163.9					
									11-Feb-04 11-Feb-04	190.8	191.8					
103/14-02-027-22W4/00	17-Aug-04	19-Aug-04	N	144	1326	0.8	6	9	17-Fab-05	615.0	618.0					
									17-Feb-05 26-Feb-05	613.5 543.0	614.5 544.0					
									25-Oct-04	1226.0	1229.0					
									09-Jan-05 03-Mar-05	671.5 501.0	676.0 502.0					
									16-Jan-05	646.0	650.0					
	-	-							25-Oct-04	1223.0	1226.0					
100/10-03-027-22W4/00	18-Jun-95	20-Jun-95	N	44	764	-0.7	- 1 -	2	29-Jul-95 29-Jul-95	680.0 673.0	683.0 678.0					
102/10-03-027-22W4/00	19-May-02	20-May-02	N	64	462	03	3	13	28-Jun-02 28-Jun-02	196.2	199.2					
									28-Jun-02	261 7	262.7					
									28-Jun-02 28-Jun-02	218.8	221.8					
									28-Jun-02	311.4	312.4					
									28-Jun-02 28-Jun-02	256.2 228.3	258.2 229.3					
									28-Jun-02	341.0	342.0					
									28-Jun-02	203.1	204.1					
									28-Jun-02 28- Jun-02	254.2	256.2					
100/16-02-027-22W4/00	14-Aug-04	16-Aug-04	N	143	1326	0	5	15	28-Mar-05	246.3	249.3	1	02-May-05	191.4	377 3	N2
									28-Mar-05	210 1	211 1 586.0					
									28-Mar-05	233.0	234.0					
									15-Sep-04 28-Mar-05	1223.5	1225.5					
									28-Mar-05	376.3	377 3					
									28-Mar-05 28-Mar-05	372.9	373.9					
									28-Mar-05	191.4	192.4					
									28-Mar-05	214.3	216 3					
									28-Mar-05 28-Mar-05	193.6 300.6	196.6 301.6					
102/16 02 027 22/6/4/00			N	4503	#81/6	attin.	4677.6	#61/5	28-Mar-05	205.8	205.8					
100/06-02-027-22W4/00	18-Aug-89	24-Aug-89	N	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A			-				
102/06-02-027-22W4/00	27-Oct-03	07-Nov-03	N	150	1331		5	7	26-Apr-04 26-Feb-04	600.0 646.0	601 0 650 0					
									26-Feb-04	637.0	638.5					
									13-Jan-04	1221.5	1223.0					
									26-Feb-04	640.0 1225.0	643.0 1229.0					
103/05-02-027-22W4/00	14-May-05	25-May-05	N	69	754	1	2	16	30-Aug-05	311.1	312.1	1	22-Sep-05	191.5	654.9	NZ
									30-Aug-05	213.9	214.4					
									30-Aug-05	217.0	219.0					
									30-Aug-05 04-Jul-05	654.4	654.9 499.5					
									30-Aug-05	389.4	389.9					
									16-Jul-05 30-Aug-05	235.0 248.8	239.0 251.8					
									04-Jul-05	500.5	503.5					
									30-Aug-05 10-Jul-05	306.5 256.5	307.0					
									30-Aug-05	196.0	197.0					
									30-Aug-05 30-Aug-05	197.5	192.0					
									30-Aug-05	227.4	227.9					

Well info for Alberta Research Council request 20-Apr-2006

all wells within 1600m of La Well Head	Spud Date	Rig Release	Lost circulation	Surface Casing Dep	pth TD Cen	nent returns (surface casing	g) Cement returns (prod casing)	Perf Count	Perf date	Perf top	Perf bottom	Frac Count	Frac Date	Frac Top	Frac Bottom	Frac fluid
(/00 event sequence) 100/13-11-027-22/W4/00	16-Jun-03	18-Jun-03	(Y/N) N	(m) 140	(m) 1342	(m3)	(m3)	2	11-Aua-03	(mKb) 682.5	(mKb) 684.0			(mKb)	(mKb)	
100/16 11 007 0000000	00.44 00	08.1 00	N.	000	1460				17-Jul-03	1234.0	1236.0	-				
100/16-11-027-22/04/00	20-May-00	06-Jun-00	N.	200	1463	0.5		2	29-Jul-00 15-Jul-00	1211.0 1431.5	1214.0 1433.0					
100/15-10-027-22/04/00	04-Jun-03	07-Jun-03	N	135	1548	2	4	3	04-Dec-03 23-04-03	718.0	720.0					
									13-Aug-03	1498.0	1500.0					
100/04-12-027-22W4/00	26-Jul-04	30-Jul-04	N	142	1438	0	6	5	17-Feb-05 29-Oct-04	602 0 1314 6	603.0 1320.5					
									11-Feb-05	666.0	670.0					
								1.1.1	11-Feb-05 17-Feb-05	671.0 604.0	673.5					
100/05-12-027-22W4/00	20-Jul-98	21-Jul-95	N.	#N/A	751	#N/A	4	21	31-Jul-03	186.0	187.0	2	07-Sep-98	565.0	568.0	N2
									31-Jul-03	231.5	234.5		za-seb-ap	565.0	000.0	niz.
									31-Jul-03	366.0	368 0					
									31-Jul-03	199.0	202.0					
									31-Jul-03 31-Jul-03	376.0	377.0					
									31-Jul-03	363.0	364.0					
									31-Jul-03	208.5	209.5					
									31-Jul-03	293 0	295 0					
									31-Jul-03	360.5	361.5					
									31-Jul-03 30-Auro-98	372.0	373.0					
									31-Jul-03	238.0	239.0					
									31-Jul-03 31-Jul-03	190.0	192.0 197.0					
								-	31-Jul-03	214.0	215.0					
102/06-12-027-22W4/00	31-Jan-02	04-Feb-02	N	202	1464	1	0.5	3	23-Feb-02	1208.0	321.5					
									23-Feb-02	1210.0	1211.0					
100/08-12-027-22W4/00	07-Dec-02	09-Dec-02	N	132	1294	0.5	8	4	29-May-04	605.0	612.0	-		-		
									01-Feb-03	1192.5	1195.0					
									03-May-04	617.5	622.5					
102/08-12-027-22W4/00	22-Jan-04	22-Jan-04	N	43	503	92	.1	14	27-Apr-04	280.2	282.2	1	24-Jun-04	163,0	399,3	NZ.
									27-Apr-04	163.0	167.0					
									27-Apr-04	186.0	188.0					
									27-Apr-04	305.4	308.4					
									27-Apt-04 27-Apt-04	344.5	345.5 351.2					
									27-Apr-04	307.2	308.2					
									27-Apr-04 27-Apr-04	181.1	182.1					
									27-Apr-04	398.3	399.3					
									27-Apr-04	176.8	177.8					
100/14-12-027-22W4/00	26-Jun-03	29-Jun-03	N	159	1456	1	3	3	20-Sep-03	1426.0	1428.5					
									31-Jul-03	1426.5	1428.0	2				
100/04-13-027-22W4/00	05-Feb-05	08-Feb-05	N	162 #N/A	1467	2.	6	1	17-Feb-05	1209.0	1212.0	1	05.Sen.OF	0.0	0.0	N7
102/07-13-027-22W4/00	20-501-50 22-May-02	24-May-02	N	194	1482	0.5	3	2	15-Oct-02	1206.0	1208.0	-	na-geb-ap	0.0	0.0	142
100/12-13-027-22/04/00	17- bil-03	20, 101,03	N	140	1367		4		06-Jun-02	1438.0	1442.5	-				
100/15-13-027-22W4/00	18-Jun-03	21-Jun-03	N	162	1481	2	3	4	20-Sep-03	1216.0	1219.0					
									31-Jul-03	1459.5	1461.0					
	_		-	100					29-Aug-03	1404.5	1406.0					
100/03-14-027-22W4/00	06-Jul-05	06-Jul-05	N	66	746	0,5	2	20	27-Feb-06	378.0	379.0 239.8	2	14-Aug-05	621 5	645 0 857 6	N2 N2
									27-Feb-06	201.4	202.0				just is	
									27-Feb-06 24-Jul-05	508.7 644.0	509.7					
									27-Feb-06	373.1	374.1					
									27-Feb-06	248.5 324.3	325.3					
									27-Feb-06	301.9	302.9					
									24-Jul-05	621.5	623.5					
									27-Feb-06 27-Eeb-06	367.9	368.9					
									27-Feb-06	204.5	205.5					
									25-Sep-05 27-Feb-06	223.0	225 0					
									27-Feb-06	207.5	208.5					
									27-Feb-06 27-Feb-06	205.7	206.7					
100 00 11 00				1	444.074	100.00			04-Sep-05	416.0	418.0	-	_			
102/03-14-027-22W4/00 100/08-14-027-22W4/00	10-Jun-98	26-Jul-98	N.	#N/A #N/A	#N/A 759	WN/A	#N/A	#N/A	#N/A 05-Sep-98	569.0	572.0	-		_		
100/01-24-027-22W4/00	27-Jul-98	28-Jul-98	N	#N/A	762	#N/A	1	1	21-Nov-98	430.0	433.0	1	26-Nov-98	430.0	433.0	N2
100/11-07-027-21W4/00	04-Jun-94	14-Jun-94	N	308	1501	#N/A	#N/A	5	27-Jun-94 15-Jul-94	1387.5	1389	3	05-Jul-94 10-Jul-94	1210.0	1212.0	
									27-Jun-1994	1388.5	1389		17-Jul-94	654.0	659.0	
									28-Jun-94	1210	1212		-			
100/07-18-027-21W4/00	16-Aug-1974	25-Aug-1974	N	151	632	#N/A	#N/A	2	18-Jun-97	591.9	594.4					

APPENDIX B WATER WELL DRILLING REPORTS

Wate Alberta Environment	port is supplied by the Driller, The for its accuracy.	Repor he province d	t isclaims responsibility	Well I.D.: Map Verified: Date Report Received: Measurements:	0123545 Map Imperial	
1. Contractor & Well Owner Informat	on			2. Well Locatio	on	
Company Name:		Drilling Company Approval No.:		1/4 or Sec Tu	wp Rge Westor	
Mailing Address: City or T	own:	Postal Code:		SE 11 0	27 22 4	
WellOwner's Name: Well Loc PATTERSON JOE	ation Identifier:	tion Identifier:			Boundary	
P.O. Box Number: Mailing J 718 ROSEB	Address:	Postal Code	¢.	Lot Block	Plan	
City: Province	3	Country:		Well Elev: 2625 FT	How Obtain: Estimated	
3. Drilling Information				6. Well Yield		
Type of Work: New Well Reclaimed Well Date Reclaimed: Ma	aterials Used:		Proposed well use: Domestic & Stock Anticipated Water	Test Date (yyyy/mm/dd): 1977/12/14	Start Time: 11:00 AM	
Method of Drilling: Rotary	to: College		Requirements/day	Test Method: Baile	30 FT	
Gas Present: No Oi	Present: No		Gallona	static level:		
4. Formation Log	5. Well Completion	5. Well Completion			2 Gallons/Min	
from Lithology Description	Date Started(yyyy/mm/dd) 1977/12/12): Date Co 1977/12	mpleted(yyyy/mm/dd): /14	Depth of pump	0 FT	
ground Entrology Description	Well Depth: 200 FT	Borehole	e Diameter: 0 Inches	Water level at	FT	
30 Sandy Topsoil	Size OD: 0 Inches	Size OD	: 5.5 Inches	end of		
32 Hard Ledges	Wall Thickness: 0 Inches	Wall Thi	ckness: 0.156 Inches	Distance from top o	of Inches	
160 Gray Clay	Bottom at: 0 FT	Top: 0 F	T Bottom: 200	casing to ground le	vel:	
200 Gray Shale	Derforations	Parforat	ione Cine:	Elapse	ter level (feet) id Time	
	from: 120 FT to: 200 FT from: 0 FT to: 0 FT from: 0 FT to: 0 FT Perforated by: Torch Seal: Packer & Cement from: 50 FT	0.125 Inches x 2 Inches 0 Inches x 0 Inches 0 Inches x 0 Inches to: 100 FT		Total Drawdown: 0 FT If water removal was less than 2 hr duration, reason why:		
	Seal: from: 0 FT Seal:	to: 0 FT		Recommended pumping rate: 4 Gallons/Min Recommended pump intake: 0 FT Type Pump Installed Pump Type: Pump Model: H.P.: Any further pumptest information?		
	from: 0 FT	to: 0 FT				
	from: 0 FT to: 0 FT	Screen Slot Size	D: 0 Inches e: 0 Inches			
	Screen Type:	Screen	D: 0 Inches			
	from: 0 FT to: 0 FT Screen Installation Methor	Slot Size	e: 0 Inches			
	Fittings Top:	Bottom:				
	Pack: Grain Size:	Amount	-			
	Geophysical Log Taken: Retained on Files:					
	Additional Test and/or Pur Chemistries taken By Drill Held: 1	Additional Test and/or Pump Data Chemistries taken By Driller: No Held: 1 Documents Held: 2				
	Pitless Adapter Type: Drop Pipe Type: Length: FT Comments:	Diamete	r: Inches	-		
	7. Contractor Certif Driller's Name: Certification No.: This well was constructed regulation of the Alberta E Enhancement Act. All info	fication UNKNO I in accordanc Environmental prmation in this	WN DRILLER e with the Water Well Protection & s report is true.			

APPENDIX C PUMPING TEST GRAPHICAL SOLUTION

M & M Drilling Co. Ltd.

Box 1, Site 22, RR 2, Strathmore, AB T1P 1K5

(403) 934-4271 • Fax (403) 934-4865

Name:	LAURIDSEN, PETER/FIONA	Test #:	1236 - 5793
Addres:	BOX 681	Date:	12/6/2006
Location:	ROSEBUD, ALBERTA	Start Time:	8:30:00 AM
Post. Code:	T0J 2T0 Phone: 403-677-2378	Static Level:	8.300M
Tested For:	ENCANA, TYLAR SMITH	Well Name:	ECA ECOG WAYNE HUSSA
Water Well Location:	SW-11-27-22-W4	Land Location:	05-28-26-21-W4
Well Description:	STOCK WELL	AFE Number:	0673357/WHEDC10/20831
Pumping Rate:	2.4 IGM START 1.5 IGM FINISH	Readings By:	DAVE

PRE-TEST		[]POST TEST	REALESTATE		
DRAW	DOWN READINGS	RECO	VERY READINGS		
MINUTES	DEPTH in METERS	MINUTES	DEPTH in METERS		
1		1	. 32.05		
2	12.75	2	31.67		
3	13.805	3	31.48		
4	15.635	4	31.17		
5	16.285	5	30.835		
6	18.15	ő	30.5		
7	19.6	7	30.255		
8	20.775	8	30.01		
9	21.765	9	30.7		
10	22.75	10	29.395		
15	26.975	15	29.885		
20	29.41	20	26.35		
25	30.44	25	24.98		
30	30.875	30	23.225		
35	31.41	35	22.265		
40	31.66	40	21.05		
50	31.75	50	19.7		
60	31.74	60	17.645		
70	31.76	70	16,24		
80	31.78	80	15.44		
90	31.8	90	14.56		
100	32.08	100	1.3.465		
120	32.36	120	12.18		

June 5, 2007 Lauridsen Well Puming Test Flow rate variable 2.4 to 1.5 Igal/min, Well diameter 5.5 inches M&M Drilling

Lauridsen Well Puming	g Test	
able 1.7 to 0.9 USgal/n	nin, Well di	ameter 5.5 inches
sampling		
Elapsed Time (min)	WL (m)	DD (m)
0	15.2	0
1	16.48	1.28
2	17.02	1.82
6	18.74	3.54
11	20.37	5.17
16	21.7	6.5
21	22.825	7.625
36	24.72	9.52
47	25.44	10.24
81	25.39	10.19
	Lauridsen Well Puming able 1.7 to 0.9 USgal/n sampling Elapsed Time (min) 0 1 2 6 11 2 6 11 16 21 36 47 81	Lauridsen Well Puming Test able 1.7 to 0.9 USgal/min, Well dia sampling Elapsed Time (min) WL (m) 0 15.2 1 16.48 2 17.02 6 18.74 11 20.37 16 21.7 21 22.825 36 24.72 47 25.44 81 25.39

APPENDIX D

ASSESSMENT OF METHANE GAS MIGRATION POTENTIAL

Assessment of the forces controlling the methane gas bubble migration (personal communication with Dr. Jon Jones, PhD., University of Waterloo).

Buoyancy Force:

Buoyancy is the upward force exerted on an object produced by the surrounding fluid in which it is fully or partially immersed due to the pressure difference of the fluid between the top and the bottom of the object. Buoyancy is the force that gives the wings on airplanes the lift required for them to fly.

The net upward buoyancy force is equal to the magnitude of the weight of the fluid displaced by the object.

In simpler terms: Suppose you put a rubber ball in a beaker of water. One of three things will happen:

1) If the weight of the rubber ball equals the weight of the volume of water it displaces: the ball will remain stationary

2) If the weight of the ball is less than the weight of the volume of water it displaces: the ball will begin to float upwards until it breaks through the water surface and will continue to rise until the weight of the volume of water displaced equals the weight of the rubber ball. This is why ice bergs float. A cubic meter of iceberg weighs less than a cubic meter of ocean water.

3) If the weight of the ball is greater than the weight of the volume of water it displaces: the rubber ball will sink to the bottom of the beaker.

Weight Force (In Terms of Methane Gas and Water):

One cubic meter of methane gas under 1 atmosphere of pressure at 15° C has a mass of ~ 0.68 kg. One meter of water under the same conditions has a mass of ~ 1000 kg. So if we placed a bubble of methane gas in our beaker, it would always float upwards because the mass of the methane is much less than the mass of the water it displaces.

Comparison of Forces:

Looking at the forces acting on the bubble of methane gas:

The net force pulling the methane gas bubble upwards is: Fb - Wm

Where

Fb = Buoyant force [MLT-2]

Wm = Weight of the bubble [MLT-2]

We have established that the weight of the methane gas bubble is much less than the buoyant force (which is equal to the weight of the water that the bubble displaces). Therefore, the gas bubble will migrate upwards at some velocity rate.

If the velocity rate at which the methane gas bubble is rising were to be counteracted by water flowing downwards at the same rate of velocity, then the bubble would remain stationary. If the water velocity were increased, the bubble would be pushed downward. Conversely, if the water velocity were decreased, the bubble would again begin to move upward, albeit at a slower rate.

The velocity at which a gas bubble migrates upward in a column of water is a function of the size of the bubble, i.e. the larger the bubble, the larger the upward velocity due to the increase in the net upward buoyant force. Also note that, as the gas bubble migrates upwards, it will be hindered by friction exerted on the bubble due to the viscosity of the fluid it is rising through.

Calculation Results:

Given the velocity that a gas bubble migrates upward in a column of water, it is simply a matter of determining if there is sufficient downward water velocity to counteract the upward migration of the bubble.

Radius of gas bubble (m)	Terminal upward velocity (m/s)
1.0 x 10 ⁻⁶	2.18 x 10 ⁻⁶
1.0 x 10 ⁻⁵	2.18 x 10 ⁻⁴
1.0 x 10 ⁻⁴	2.18 x 10 ⁻²
1.0 x 10 ⁻³	2.18×10^{0}

Note: The upward velocities values listed represent theoretical maximum values. There are a number of factors that can affect these values.

The three most likely scenarios for the migration of the gas bubbles in natural systems would be through fractures, porous media and through cylindrical conduits like boreholes. The formulas for calculating the water velocities in these openings can be looked up in any standard hydrogeology textbook. Naturally, the site-specific conditions (and corresponding hydrological parameters) will dictate which particular formula (or formulas) is used.

Partial List of Mitigating Factors Affecting Upward Gas Migration

1. Tortuosity: Except for the case of upward migration through a borehole, the bubble will have to take a circuitous path in its migration upward as it manoeuvres through interconnected pore throats or fracture networks. As a result, the upward migration of the gas will be hindered.

2. Relative Size of the Gas Bubble to Pore Throat, Borehole or Fracture Aperture it is Flowing Through: If the diameter of the bubble is of the same order as the opening it is flowing through, there will be additional frictional forces slowing down the upward migration of the gas. The velocity values listed above assume that these forces are negligible.

3. Gas Entry Pressure: For the case of gas migration through fracture apertures or pore throats that are smaller than the diameter of the gas bubble, sufficient upward buoyant force is required for the bubble to exceed the gas entry pressure. All other factors being constant, a single gas bubble whose initial buoyant force is insufficient to overcome the gas entry pressure will remain trapped. However, the usual case is a large number of gas bubbles migrating simultaneously.

As the gas consolidates at entrapment sites, the buoyant force will increase and eventually upward migration will resume.

4. Bubble Volume as a Function of Pressure: As the gas bubble migrates upward, the column of fluid exerting pressure on the bubble decreases. As a result, the bubble increases in size, thereby generating greater upward velocity due to an increase in the buoyant force. A quantitative expression relating the dynamics between bubble expansion and while moving upward and the accompanying increase in velocity are very difficult to obtain. For the velocities listed, it was assumed that the size of the bubble remains constant. While the first three mitigating factors in this list would tend to decrease the rate of upward gas migration, this factor would increase it.

5. Any geochemical processes that would make the bubble lose mass during migration (and thereby reduce its volume and decrease its upward velocity). However, it is very likely that this factor would be negligible in most instances.

APPENDIX E

CHEMICAL ANALYSES

ALBERTA ENVIRONMENT CHEMICAL ANALYSIS REPORT

WELL NAME: PATTERSON, LOCATION: LSD SE SEC 11 WELL DEPTH: 200 AQUIFER: SAMPLING DATE: 1/31/1983	J. TWP 027 RG 22 M 4 TIME: 0	WELL ID No:0123545 SAMPLE No: 1114 WATER LEVEL: -9 LABORATORY: VG PRINT DATE: 11/30/2007	
FIELD: BICARBONATE CHLORIDE DISSOLVED OXYGEN IRON PH S2 TOTAL ALKALINITY	MG/L -9 -9 -9 -9 -9 -9 -9 -9	FIELD: CARBONATE CONDUCTIVITY EH MANGANESE SULPHATE TEMPERATURE°C TOTAL HARDNESS	MG/L -9 -9 -9 -9 -9 -9 -9
LABORATORY: Analysis Dat COD DIC ION BALANCE SAR TOTAL ALKALINITY TDS DOC	e: 2/16/1983 -9 -9 0.95 -9 671 1126 -9	CONDUCTIVITY FLUORIDE PH SIO2 TC TN	1926 1.38 8.7 8.1 -9 -9
AMMONIUM-N CALCIUM CHLORIDE NITRATE-N PHOSPHATE SODIUM NO ₂ + NO ₃	-9 0.998* 260.36765 -9 -9 454.9998 0.0144*	BICARBONATE CARBONATE MAGNESIUM NITRITE-N POTASSIUM SULPHATE TOTAL HARDNESS	765.7513 26.001 1.000768* 0.0504* 0.9085 4.9968* 7
ALUMINUM BARIUM CADMIUM COBALT IRON MANGANESE MOLYBDENUM SELENIUM VANADIUM	-9 -9 -9 2.04 -9 -9 -9 -9 -9 -9	ARSENIC BERYLIUM CHROMIUM COPPER LEAD MERCURY NICKEL STRONTIUM ZINC	-9 -9 -9 -9 -9 -9 -9 -9 -9 -9
HYDROCARBONS PHENOLICS	-9 -9	PESTICIDES OTHER 3	-9 0

Remarks:

-9 indicates that no analysis was done for this parameter

*Indicates concentrations less than.

Temperature reported in Degree Centigrade. Conductivity reported in microsiemens/cm, pH in pH units. Alkalinity and Hardness expressed as Calcium Carbonate. FE, VA, PB, AL, AG expressed as extractable. FE in field measurements and all remaining metals expressed as total.

- EH Oxidation-Reduction Potential DIC Dissolved Inorganic Carbon DOC Dissolved Organic Carbon

TDS - Total Dissolved Solids

NOTE: This data may not be fully checked.

The Province disclaims all responsibility for its accuracy

SAR - Sodium Adsorption Ratio

COD - Chemical Oxygen Demand

TN - Total Particulate Nitrogen

TC - Total Particulate Carbon

Report 1

Dec 29 05 10:37a M & M DRILLING (403)934 - 4865M & M Drilling Co. Ltd. Box 1, Site 22, RR 2, Strathmore, AB T1P 1K5 (403) 934-4271 • Fax (403) 934-4865 Name: LAURIDSEN, PETER Test #: 1236 - 2516 Address: BOX 681 Date: 11/26/2003 Location: ROSEBUD, ALBERTA Start Time: 10:15 AM Post. Code: T0J 2T0 Static Level: Phone: 403-677-2378 34' 9 1/2" Tested For: ENCANA CORP., T. SMITH Well Name: ECA-ECOG 102 REDLAND Well Location/Description: SW-11-27-22-W4 FARM WELL Land Location: 4-11-27-22-W4 Pumping Rate: STATIC AND SAMPLES AFE Number: 0316879 Readings By: GPS N-51-17-22.0 EINER DAVIDSON W-112-59-45.8 PRE-TEST POST TEST REALESTATE Well Location On Site: APPROX 24' FROM N.W. CORNER OF QUANSET Pit Type: 5' CULVERT Pit Condition: TOP OF CULVERT IN POOR CONDITION Pump Size and Type: JET PUMP Tank Size and Type: 1600 GALLON CISTERN Casing Size and Type: 5 3/4" STEEL Liner Size and Type: N/A Well Depth: N/A Water: - Appearance □ Clear ☑ Colour SLIGHT YELLOW \blacksquare None \square Yes - Odor - Suspended Solids: \Box None \blacksquare Yes FINE PARTICLES 🗆 No ☑ Yes Pumping Procedure: - Open Discharge: - Pressure Tank 🗹 No □ Yes - Pressure Reading N/A - Special Fitting 🗹 None 🗆 Yes \Box Other Sample \Box Chemical23: Samples Taken: ☑ Chemical51: ☑ Coliform Bacteri □ Heavy Metals: ☑ TOC ☑ H2S: OilAndGrease: Lab where samples were tested: ✓ WSH □ Other Measurement Taken From: WELL SAMPLES TAKEN FROM HYDRANT. Miscellaneous test information:

29 05 10:38	3a M	& M DRILLIN	ILLING (403)934-4865			p.5
WSH	abs (1	992] LTD.			3851B - 21 Calg Cana Ph: (400 Fax: (400 Website: www.wa	Street N.E. Jary, Alberta da T2E6T5 3) 250-9164 3) 291-4597 shlabs.com
M & M Drilling Co. Box 1, Site 22, RR# Strathmore, AB T1 Attn Bill Murray	P.O # Lab # Ph Fax	3278 41122 934-4271 934-4865	Client I.D Legal Date Sampled Date Received Date Reported	Peter Lauridsen Farm Well SW-11-27-22-W4 11/26/03 11/27/03 12/4/03		
		WAT	ER RESUI	LTS		
Cations	······	Anions		General Paramet	ers	
Saturation Index Calcium Iron Magnesium Manganese Potassium	<i>mg/L</i> 0.0 4.6 0.647 <0.1 0.010 0.6	Bicarbonates Bromides Carbonates Chlorides Fluorides Nitrates	mg/L 861 < 0.6 0 200 1.7 1.2	E.C. (μS/cm) Coliform, Total Escherichia Coli (Heterotrophic Plate C Hardness (CaCO) pH	mg/L (CF (CF Count 3) $\frac{1843}{TNTC}$ (CF (CF 0 (CF (CF 0 (CF 0 (CF (CF (CF (CF (CF (CF (CF (CF	?U/100mL) ?U/100mL) PN/mL) FT

Trace Metals Profile

< 0.3

1.2

N/A

4

Sulfides (S)

T. Alkalinity (CaCO₃)

Total Organic Carbon

Total Kjeldahl Nitrogen

T.D.S (Calculated)

Turbidity (N.T.U)

Ammonia Nitrogen

Total Phosphorus

Color (T.C.U)

	ug/L		ug/L		ug/L
Phosphorus	129	Cadmium	< 0.8	Barium	109
Thallium	< 5	Nickel	< 2	Lithium	140
Arsenic	< 2	Beryllium	< 0.8	Tin	2
Selenium	6	Thorium	< 5	Molybdenum	5
Chromium	< 0.8	Vanadium	< 0.8	Antimony	< 1
Zinc	27	Bismuth	3	Titanium	< 1
Lead	< 2	Silver	< 0.8	Zirconium	< 1
Copper	3	Aluminum	16	Uranium	
Cobalt	< 0.8	Strontium	69	Mercury	

Nitrites

Sulfates

(May limit plant growth)

 $NO_3 + NO_2$

Phosphates

460

< 0.1

20.25 19.94

1.02

0.77

0.59

57.77

Silty samples may account for higher iron, manganese and silicon content.

*TDS: Total Dissolved Solids *SAR : Sodium Adsorption Ratio

*TNTC: Too Numerous To Count

Silicon

Sodium

Ammonium

Sum of Cations

Sum of Anions

Tonic Balance

% Difference

SAR

T.D.S. / E.C. Ratio

*< Denotes less than detection limit

The results above are related only to the items analyzed.

Please see the reverse side of this page for the Canadian Drinking Water Quality Guideline

Certified By

0.014

706

1096

2.45

9.2

Dec 29 05 10:37a	M & 1	M DRILLING		(403)934	-4865	p.2%
	Μ	& M Drill	ing	Co. I	td	ېږ •	
	Box	1, Site 22, RR 2, Str	athmore,	AB T1P	1K5		
		(403) 934-4271 • F	ax (403) 9	34-4865			
Name: Address. Location: Post. Code: Tested For: Well Location/Description: Pumping Rate: GPS	LAURIDS BOX 681 ROSEBUD T0J 2T0 ENCANA (SW-11-27-2 STATIC AJ N-51-17-22.	EN, PETER), ALBERTA Phone: 403-07 CORP., K. SCURGE 22-W4 FARM WE ND SAMPLES 0 W-112-59-4 T TPOST TEST TRE	1-2378 ON LL 5.8 ALESTATE	T Start 1 Static I Well N Land Loca AFE Nur Reading	est #: Date: Time: Level: Vame: ution: nber: s By:	1236 - 3196 8/13/2004 8:20 AM 29' 6 1/2" ECA/ECOG 10 4-11-27-22-4 0316879 D.SAWYER &	2 REDLAND H.JORDAN
Well Loc Pump S Tank S Casing S Liner S	ation On Sitt Pit Type Pit Condition Size and Type Size and Type Size and Type Size and Type Well Dept	e: 24' N.W. OF QU. e: 5' CULVERT n: POOR e: JET PUMP e: 1600 GALLON e: 5 3/4" e: N/A h: N/A	ANSET CISTER	N	9116	HTV VELLOW	
	Water:	- Appearance - Odor - Suspended Solids:	□ Clear ☑ None □ None	☑ Colour □ Yes ☑ Yes	LITT	LE BLACK PA	THCLES
Pumping .	Procedure:	- Open Discharge: - Pressure Tank - Pressure Reading - Special Fitting	□ No ☑ No N/A ☑ Nonc	☑ Yes □ Yes □ Yes			
Sam)	oles Taken:	 □ Chemical23: ☑ Chemical51: ☑ Coliform Bacteri □ Heavy Metals: ☑ TOC ☑ H2S: □ OilAndGrease: 	□ Other	Sample			'n
Lab where samples w	ere tested:	☑ WSH □ Othe	r				
Measurement To	aken From:	CASING TOP					
Miscellaneous test ir	nformation:	SAMPLES TAKE	N FROM	DIRECT I	INE I	NTO CISTERN	

N. C.

Waterwells • Exploration • Pumps and Water Systems

*

29 05 1	0:37a	M & M DRILLING		(403)934-	-4865	p.3
("WS	H abs	(1992) LTD.		We	3851B - 21 St Calgary Canada Ph: (403) 2 Fax: (403) 2 bsite: www.wsh	reet N.E. y, Alberta T2E6T5 250-9164 291-4597 labs.com
M & M Drillin Box 1, Site 22, RF Strathmore, AB 1	g Co. Ltd R 2 [1P 1K5	I.	Phone: 9 Fax: 9 Cell:	34-4271 34-4865	Lab Number:	44209
Attention: Client ID: Location: Legal:	Pe SW	Bill Murray ter Lauridsen Farm Well /-11-27-22-W4	Date Sample Date Receive Date Reporte	ed: 8/13/2004 ed: 8/13/2004 ed: 8/17/2004		
<u>Cations</u>	ma/l	<u>General Parameters</u>			Trace Metals	uall
Calcium Iron Magnesium	6.3 1.48 0.9	Electrical Conductivity pH (in pH units) Hardness (as mg/L Ca	r (μS/cm) aCO ₃)	1554 8.48 19	Thallium Thorium Tin	<5 <5 1
Manganese Potassium Sodium	0.014	Total Alkalinity (as mg Calculated TDS (mg/L	/L CaCO ₃) .)	· 714 1078	Molybdenum Antimony Titanium	2
Ammonium	<0.1	Other Parameters			Zirconium Phosphorus	1 52
<u>r. Jns</u> Bicarbonates	mg/L	Total Coliform (CFU/1 Escherichia Coliform (00mL) CFU/100mL)	TNTC 0	Arsenic Selenium	<2
Bromides Carbonates	<0.6 10	Sulfides (S) (mg/L) Turbidity (NTU)		0.024 2.1	Bismuth Nickel	<2 <2 3
Chlorides Fluorides Nitrates	186 	Color (TCU) Total Kjeldahl Nitrogen Ammonia Nitrogen (m	n (mg/L) BACTE	RIA DETECTER	Aluminum Chromium Zinc	20 <0.8 3
Nitrites $NO_3 + NO_2$	<0.3 <0.2	Organic Nitrogen (mg/ Total Phosphorus (mg	L) /L)	LORINATION	Copper Cadmium	2<0.8
Sulfates	<0.6	Total Organic Carbon Dissolved Organic Car	(mg/L) bon (mg/L)	• 11.0	Beryllium Cobalt	<0.8 2
Sum of Cations Sum of Anions	20.12 19.52	Trihalomethanes (mg/ Boron (mg/L)	L)		Vanadium Silver	<0.8 <0.8
Ion Balance % Difference	1.03 1.51	Silicon (mg/L) Phenol (mg/L)			Strontium Barium	49 62
SAR Saturation Index	44.67	Total Suspended Solid Total Dissolved Solids	ls (mg/L) (mg/L)	· · ·	Uranium Uranium Mercury	64
——————————————————————————————————————				Certified By:	BW,	

.

· 🛩 aples may account for higher iron, manganese and silicon concentrations.

The results above are related only to the items analyzed.

Please see the reverse side of this page for the Canadian Drinking Water Quality Guideline.

TDS = Total Dissolved Solids, SAR = Sodium Adsorption Ratio, TNTC = Too Numerous To Count (>200 colonies), < denotes less than detection limit Analysis methods are based on Standard Methods for the Examination of Water and Wastewater 20th Edition and can be made available upon request.

San Somex INTERNATIONAL LIMITED	nple Point I.D. Client I.D.		Meter Nun	nber		Laboratory Number
perator Name			NTS (BC	Survey)	Well ID	
W-11-27-22 W4M			MCLK		KOME	X
/ell Name			Name of Sampl	ler	Company	
		VALHALLA	HYDRANT GAS F	ROM BOTTLE	SYRIN	GE
ield or Area	Pool or Zone	Sample Point			Container	Identity Perce
ast Recovery Interval 1	Interval 2 Interval 3	E	ievations (m) ———	Sample Gathering	Point	Solution Gas
ist Type No. Multiple Recovery To:		KB	GRD	Well Fluid Status		Well Status Mode
Production Rates	Gauge Pressures kPa	Tem	perature °C	Well Status Type		Well Type
Water m3/d Oil m3/d Gas 1000m3/d	Source As Received	Source	As Received	Gas or Condensate	Project	Licence No.
006/01/0510:30	2006/01/06	2006/01/10	2006/01/	10	KD	
ate Sampled Start Date Sampled End	Date Received	Date Reported	Date Revision	n Reported	Analyst	
ARAMETER DESCRIPTION	RESULTS	Units	Method			
issolved Gas Analysis						
arbon Monoxide	<0.01	molo%				
arbon Dioxide	0.38	mole%				
Dxygen	5.24	mole%				
itrogen	28.48	mole%				
yarogen	< 0.01	mole%				
lethane (CT)	65.90	mole%				
		in in a line ala)				
cetylene (C2H2)	<1	ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2)	<1 <1	ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) ithylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) ithylene (C2H4) ithane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)	<1 <1 31 <1	ppm (mole) ppm (mole) ppm (mole) ppm (mole)				
cetylene (C2H2) thylene (C2H4) thane (C2) ropylene (C3H6)		ppm (mole) ppm (mole) ppm (mole) ppm (mole)				

						A600525:A28893
Sample PC	int I.D. Client I.D.		Meter Number	ar		Laboratory Number
Operator Name			NTS (BC Su	rvey)	Well ID	
SW-11-27-22 W4M			MCLK		KOME	X
Well Name			Name of Sampler		Company	
		#1 VALHAL	LA WELL BOTTLE S	SAMPLE	SYRIN	GE
Field or Area Pool of	Zone	Sample Point			Container	Identity Percent Full
Test Recovery Interval 1	— Interval 2 —— Interval 3 —	E	levations (m)	Sample Gathering	Point	Solution Gas
Test Type No. Multiple Recovery To:		КВ	GRD	Well Fluid Status		Well Status Mode
Production Rates	Gauge Pressures kPa	Төл	perature °C 23.0	Well Status Type		Well Type
Water m3/d Oil m3/d Gas 1000m3/d	Source As Received	Source	As Received	Gas or Condensa	te Project	Licence No.
2006/01/0511:15	2006/01/06	2006/01/10	2006/01/10) Popodad	KD	
	RESULTS	Units	Method	teponed	Analyst	
	RECOLIC	Onits	metriod			
Dissolved Gas Analysis				14°		
Carbon Monoxide	<0.01	mole%				
Carbon Dioxide	0.30	mole%				
Oxygen	5.40	mole%				
Hudrogen	20.70	mole%				
Methane (C1)	73.60	molo%				
Acetylene (C2H2)	73.00	nom (mole)				
Ethylene (C2H4)	<1	ppm (mole)				
Ethane (C2)	40	ppm (mole)				
Propylene (C3H6)	40 <1	ppm (mole)				
		ppin (mole)				
	44 In.5	not aunaliad by alloct	data dariyad from 1.00 h	formation		Beaulte relate only to How to the

					/	4000323.A20094
	le Point I.D. Client I.D.		Meter Num	ber		Laboratory Number
Operator Name			NTS (BC	Survey)	Well ID	
SW-11-27-22 W4M			MCLK		KOMEX	<
Well Name			Name of Sampl	er	Company	
		#2 VALHA	LLA WELL BO	TTLE SAMPLE	SYRING	GE
Field or Area Po	ool or Zone	Sample Point			Container le	dentity Percent
Test Recovery Interval 1	Interval 2 Interval 3	E	levations (m)	Sample Gathering Pol	int	Solution Gas
Test Time No. Multiple Recovery To:			_	Well Fluid Status		Well Status Mode
		KB	GRD			
Production Rates	Gauge Pressures kPa] [lem	23.0	Well Status Type		Well Type
Water m3/d Oil m3/d Gas 1000m3/d	Source As Received	Source	As Received	Gas or Condensate P	roject	Licence No.
2006/01/0511:25	2006/01/06	2006/01/10	2006/01/	10	KD	
Date Sampled Start Date Sampled End	2006/01/06	2006/01/10	Date Revision	Reported	Analyst	
PARAMETER DESCRIPTION	RESULTS	Units	Method	noponeu	Voluiyot	
	REGOLIG	Onits	Method			
Dissolved Gas Analysis						
Carbon Monoxido	-0.01	mala ⁹ /				
Carbon Dioxide	0.28	mole%				
Oxygen	4.70	mole%				
Nitrogen	17.38	mole%				
Hydrogen	< 0.01	mole%				
Methane (C1)	77.64	mole%				
Acetylene (C2H2)	<1	ppm (mole)				
Ethane $(C2)$	<	ppm (mole)				
Propylene (C3H6)	40	ppm (mole)				
		ppm (mole)				
				i in the second		
	99 Look a more - 11	at augustical transferrer	and a sublest from 1 and	in the more while to		

						A600525:A288	/1
Sample Point I.D. Client I.D.				nber	Laboratory Number		
Operator Name			NTS (BC	Survey)	Well ID		
SW-11-27-22 W4M			MCLK		KOME	X	
Nell Name			Name of Samp	ler	Company		
		#1 VALHA	LIA HOT WAT	FR TANK	tedlarB	an	
Field or Area	Pool or Zone	Sample Point		LICIAUX	Container	Identity	Percent Fu
Test Recovery Interval 1	Interval 2 Interval 3		levations (m)	Sample Gathering	Point	Solu	tion Gas
Test Ture No. Multiple Province To:				Well Fluid Status		Well Status Mod	θ
Production Rates	Gauge Pressures kPa	KB Ten	GRD			-	-
			23.0	Well Status Type		Well Type	
Water m3/d Oil m3/d Gas 1000m3/d	Source As Received	Source	As Received	Gas or Condensat	te Project	Licence No.	
2006/01/0512:50 Date Sampled Start Date Sampled End	2006/01/06 Date Received	2006/01/10 Date Reported	2006/01/ Date Revision	10 n Reported	Analyst		
PARAMETER DESCRIPTION	RESULTS	Units	Method			-	
Dissolved Gas Analysis							
Carbon Monoxide	< 0.01	mole%					
Carbon Dioxide	1.19	mole%					
Oxygen	2.32	mole%					
Nitrogen	19.95	mole%					
Hydrogen	0.01	mole%					
Methane (C1)	76.51	mole%					
Acetylene (C2H2)	<1	ppm (mole)					
Ethylene (C2H4)	<1	ppm (mole)					
Ethane (C2)	51	ppm (mole)					
Propylene (C3H6)	<1	ppm (mole)					
				~			
				-An-			
	(Alternation					1.	
	**		date dealers if	to farmer after		D	and the family of the second second

Remarks:

KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C63630000 P.O. #: Site Reference: SW-11-27-22 W4M

Sample Description :	VALHALLA HOUSE TAP	Maxxam Sample Number :	A28940
Sample Date & Time :	2006/01/05 13:30	Maxxam Job Number	CA600538
Sampled By :	KM	Sample Access :	
Sample Type :	Grab	Sample Matrix :	Water
Sample Received Date	2006/01/05	Report Date :	2006/01/11
Sample Station Code :			

PARAMETER DESCRIPTION	RESULTS	Units	QA/QC Batch	MDL	RDL	meq/L
Calculated Parameters						
Hardness (CaCO3)	11	mg/L	1008663	0.5	1	
Ion Balance	0.98	N/A	1008665	0.01	0.02	
Misc. Inorganics						
Conductivity	1810	uS/cm	1008323	1	2	
pH	8.43	N/A	1008322	0.01	0.02	
Total Dissolved Solids	1070	mg/L	1008671	10	20	
Anions						
Alkalinity (PP as CaCO3)	8.5	mg/L	1008320	0.5	1	
Alkalinity (Total as CaCO3)	715	mg/L	1008320	0.5	1	
Bicarbonate (HCO3)	852	mg/L	1008320	0.5	1	13.967
Carbonate (CO3)	10.3	mg/L	1008320	0.5	1	0.343
Dissolved Chloride (CI)	186	mg/L	1009158	0.5	1	5.239
Dissolved Fluoride (F)	1.73	mg/L	1009108	0.05	0.1	
Dissolved Sulphate (SO4)	3.7	mg/L	1009159	0.5	1	0.077
Hydroxide (OH)	<0.5	mg/L	1008320	0.5	1	
Nutrients						
Dissolved Nitrate (N)	< 0.003	ma/L	1009252	0.003	0.006	
Dissolved Nitrite (N)	< 0.003	mg/L	1009252	0.003	0.006	
Nitrate plus Nitrite (N)	<0.003	mg/L	1008669	0.003	0.006	
Physical Properties						
Turbidity	2.5	NTU	1008430	0.1	0.2	

N/A = Not Applicable

RDL = Reportable Detection Limit

MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. Results are not corrected for surrogate or moisture values unless otherwise stated.

Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468

Sample Description :

Sample Date & Time :

Sample Station Code :

Sample Received Date 2006/01/05

Sampled By

Sample Type

KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C63630000 P.O. #: Site Reference: SW-11-27-22 W4M

Maxxam Sample Number :

Sample Access

Sample Matrix

Report Date

A28940 Maxxam Job Number : CA600538 : Water : 2006/01/11

Elements by Atomic Spectroscopy

PARAMETER DESCRIPTION	RESULTS	Units	QA/QC Batch	MDL	RDL	meq/L
Cations						
Dissolved Calcium (Ca)	3.8	mg/L	1008496	0.3	0.6	0.190
Dissolved Magnesium (Mg)	0.4	mg/L	1008496	0.2	0.4	0.033
Dissolved Potassium (K)	0.8	mg/L	1008496	0.3	0.6	0.020
Dissolved Sodium (Na)	441	mg/L	1008496	0.5	1	19.182
Dissolved Iron (Fe)	0.06	mg/L	1008496	0.01	0.02	0.002
Dissolved Manganese (Mn)	(0.006)	mg/L	1008496	0.004	0.008	0.000

RDL = Reportable Detection Limit

MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample.

() = Result < RDL and is subject to reduced levels of confidence Results are not corrected for surrogate or moisture values unless otherwise stated.

VALHALLA HOUSE TAP

2006/01/05 13:30

KM

Grab

Calgary: 2021 - 41st Avenue N.E. T2E 6P2 Telephone(403) 291-3077 FAX(403) 291-9468

Sample Date & Time :

Sample Station Code :

Sampled By

Sample Type

Sample Description : VALHALLA HOUSE TAP

1

Sample Received Date 2006/01/05

KM

: Grab

2006/01/05 13:30

KOMEX INTERNATIONAL LIMITED Attention: JAMES ARMSTRONG Client Project #: C63630000 P.O. #: Site Reference: SW-11-27-22 W4M

Maxxam Sample Number :

Sample Access

Sample Matrix

Report Date

A28940 Maxxam Job Number : CA600538

> : Water : 2006/01/11

12

Volatile Organics by GC-MS

PARAMETER DESCRIPTION	RESULTS	Units	QA/QC Batch	MDL	RDL	meq/L
Volatiles						
Purgeable Benzene	< 0.0004	mg/L	1008353	0.0004	0.0008	
Purgeable Toluene	< 0.0004	mg/L	1008353	0.0004	0.0008	
Purgeable Ethylbenzene	< 0.0004	mg/L	1008353	0.0004	0.0008	
Purgeable Xylenes (Total)	< 0.0008	mg/L	1008353	0.0008	0.002	
Purgeable F1 (C06-C10) - BTEX	<0.1	mg/L	1008353	0.1	0.2	
Surrogate Recoveries (%):						
D8-TOLUENE (sur.):	100	Control Limits: 88 - 110				

RDL = Reportable Detection Limit

MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. Results are not corrected for surrogate or moisture values unless otherwise stated.

ENVIRO-TEST ANALYTICAL REPORT

Sample Detail	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
1353687-1	SW 11 27 22 W4								
Sampled By:	NOT PROVIDED on 05-JAN-06 @ 13:30								
Matrix:	WATER		1						
BTEX, F1	1 (C6-C10) and F2 (>C10-C16)								
	F2 (>C10-C16)	< 0.05		0.05	mg/L	10-JAN-06	11-JAN-06	DNH	R361973
BTEX a	nd F1 (C6-C10)								
	Benzene	<0.0005	C	0.0005	mg/L	09-JAN-06	08-JAN-06	OOG	R362252
	Toluene	<0.0005	C	0.0005	mg/L	09-JAN-06	08-JAN-06	OOG	R362252
	EthylBenzene	<0.0005	C	0.0005	mg/L	09-JAN-06	08-JAN-06	OOG	R362252
	Xylenes	<0.0005	C	0.0005	mg/L	09-JAN-06	08-JAN-06	OOG	R362252
	F1(C6-C10)	<0.1		0.1	mg/L	09-JAN-06	08-JAN-06	OOG	R362252
	F1-BTEX	<0.1		0.1	mg/L	09-JAN-06	08-JAN-06	OOG	R362252
	Methane, dissolved	48		0.005	mg/L	06-JAN-06	06-JAN-06	RLB	R362012
Routine	Water: Major Ions,F,Fe,Mn&Turb.						50.3		
	Iron (Fe)-Dissolved	0.02		0.01	mg/L	1.2	06-JAN-06	HSC	R361832
	Chloride (Cl)	182		0.1	mg/L	06-JAN-06	06-JAN-06	WJR	R361694
	Fluoride (F)	1.5		0.1	mg/L	06-JAN-06	06-JAN-06	WJR	R361694
	Manganese(Mn)-Dissolved	< 0.01		0.01	mg/L	1000	06-JAN-06	HSC	R361832
	Nitrate+Nitrite-N	0.08		0.05	mg/L	06-JAN-06	06-JAN-06	WJR	R361694
	Nitrate-N	< 0.05		0.05	mg/L	06-JAN-06	06-JAN-06	WJR	R361694
	Nitrite-N	0.08		0.05	mg/L	06-JAN-06	06-JAN-06	WJR	R361694
	Sulphate (SO4)	3.0		0.5	ma/L	06-JAN-06	06-JAN-06	WJR	R361694
	Turbidity	29		02	NTU	1 States of the second	09-JAN-06	KG	R362184
pH. Con	ductivity and Total Alkalinity	2.0		0.2	1112			110	11002101
pr., 001	pH	8.2		0.1	pН		06-JAN-06	KG	R361784
	Conductivity (EC)	1760		3	uS/cm	1	06-JAN-06	KG	R361784
	Bicarbonate (HCO3)	890		5	mg/L		06-JAN-06	KG	R361784
	Carbonate (CO3)	<5		5	mg/L		06-JAN-06	KG	R361784
	Hydroxide (OH)	<5		5	mg/L		06-JAN-06	KG	R361784
	Alkalinity, Total (as CaCO3)	730		5	mg/L		06-JAN-06	KG	R361784
lon Bala	ance Calculation			_			S. S. S.		
	Ion Balance	94,4			%	1	09-JAN-06		
	TDS (Calculated)	1050			mg/L		09-JAN-06		
	Hardness (as CaCO3)	10			mg/L	1	09-JAN-06		
ICP met	als for routine water						OC LANLOC	1100	0001000
	Calcium (Ca)	3.5		0.5	mg/L		DE JAN DE	HSC	R361832
	Potassium (K)	0.8		0.1	mg/L		DE LAN DE	HSC	R301032
	Nagnesium (Ng)	0.4		0.1	mg/L		DE LAN DE	HSC	R301032
	Sodiulii (Na)	424		1	mg/L		00-JAN-00	HSC	R301032
L353687-2	AIR BAG								
Sampled By:	NOT PROVIDED on 05-JAN-06 @ 13:15								
Matrix:	AIR								
	Methane	860000		2	ppm		12-JAN-06	CCE	R362424
		and the second second	1						

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

CERTIFICATE OF ANALYSIS

						/	A600525:A28872	2
KOMEX INTERNATIONAL I	Samp IMITED	ole Point I.D. Client I.D.		Meter Nun	nber		Laboratory Number	
Operator Name				NTS (BC	Survey)	Well ID		
SW-11-27-22 W4M				MCLK		KOMEX	<	
Well Name				Name of Samp	ler	Company		
Field on Anna			#2 VALHA	ALLA HOT WAT	ER TANK	tedlarBa	ag	_
rieid or Area	P	ool or Zone	Sample Point			Container le	dentity	Percent Full
Test Recovery	Interval 1 From:	Interval 2 Interval 3	E	levations (m) ———	Sample Gathering	Point	Solution	n Gas
Test Type No. Multiple Recovery	To:		KB	GRD	Well Fluid Status		Well Status Mode	
Production Rates		Gauge Pressures kPa		23.0	Well Status Type		Well Type	
Water m3/d Oil m3/d	Gas 1000m3/d	Source As Received	Source	As Received	Gas or Condensate	Project	Licence No.	
2006/01/0513:40 Date Sampled Start	ate Sampled End	2006/01/06	2006/01/10	2006/01/	10 Reported	KD		
PARAMETER DESCRIF	PTION	RESULTS	Units	Method	ГКеролец	Analysi		
Dissolved Gas Analysi	s							
Carbon Monoxide		< 0.01	mole%					
Carbon Dioxide		1.24	mole%					-
Nitrogen		1.60	mole%					
Hydrogen		0.02	mole%					
Methane (C1)		78.81	mole%					
Acetylene (C2H2)		<1	ppm (mole)					
Ethylene (C2H4)		<1	ppm (mole)					
Propylene (C3H6)		54 <1	ppm (mole)					
			ppin (mole)					
		** Information r	not supplied by client	data derived from LSD	information		Results relate on	ly to items teste
Remarks:								

Sample Detai	ls/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L364427-1	ROUTINE 1								
Sample By:	NOT PROVIDED on 17-FEB-06 @ 09:00								
Matrix:	WATER								1.1
	Iron Reducing Bacteria	<10		10	CFU/mL		17-FEB-06	BC	R379528
	Sulphate Reducing Bacteria	0.4		0.3	MPN/mL		17-FEB-06	BC	R379528
Routine	Water Analysis					1000			
	Chloride (Cl)	162		0.1	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Nitrate+Nitrite-N	< 0.05		0.05	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Nitrate-N	<0.05		0.05	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Nitrite-N	<0,05		0.05	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Sulphate (SO4)	2.5		0.5	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
pH, Co	nductivity and Total Alkalinity						President.		
	pH	8.2		0.1	pH		17-FEB-06	KG	R373648
	Conductivity (EC)	1750		3	uS/cm		17-FEB-06	KG	R373648
	Bicarbonate (HCO3)	883		5	mg/L		17-FEB-06	KG	R373648
	Carbonate (COS)	<5		5	mg/L		17-FEB-00	KG	R3/3648
	Alkalinity Total (as CaCO3)	724		5	mg/L		17-FEB-06	KG	R373648
Ion Bal	ance Calculation	124			mgre		IT TED OU	NO	11070040
	Ion Balance	90.7			%		21-FEB-06		
	TDS (Calculated)	997			mg/L		21-FEB-06		
	Hardness (as CaCO3)	10			mg/L		21-FEB-06		
ICP me	tals for routine water			1.57			1.1.1.1.1.1		
	Calcium (Ca)	3.5		0.5	mg/L		21-FEB-06	RAZ	R374344
	Potassium (K)	0.8		0.1	mg/L		21-FEB-06	RAZ	R374344
	Sodium (Na)	0.4		0.1	mg/L		21-FEB-06	RAZ	R374344
1 264427 2		393			ing/L		21-FED-00	RAZ	K374344
Sample By:	NOT PROVIDED on 17 EER 06 @ 09:00								
Motriv:	WATER								
WIGUIX.	WATER								
	Iron Reducing Bacteria	<10		10	CFU/mL		17-FEB-06	BC	R379528
	Sulphate Reducing Bacteria	0.9		0.3	MPN/mL		17-FEB-06	BC	R379528
Routine	Water Analysis			1.0		1000	1.1.1.1.1.1.1		1000
	Chloride (CI)	163		0.1	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Nitrate+Nitrite-N	<0.05		0.05	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Nitrate-N	<0.05		0.05	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Nitrite-N	<0.05		0.05	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
	Sulphate (SO4)	2.2		0.5	mg/L	17-FEB-06	17-FEB-06	WJR	R373563
pH, Co	nductivity and Total Alkalinity						17 555 00		
	pH Conductivity (EC)	8.2		0.1	pH		17-FEB-06	KG	R373648
	Bicarbonate (HCO3)	1770		5	uS/cm		17-FEB-00	KG	R373648
	Carbonate (CO3)	<5		5	mg/L		17-FEB-06	KG	R373648
	Hydroxide (OH)	<5		5	mg/L		17-FEB-06	KG	R373648
	Alkalinity, Total (as CaCO3)	732		5	mg/L		17-FEB-06	KG	R373648
Ion Bal	ance Calculation	1.10		Ť					11070010
	Ion Balance	91.0			%		21-FEB-06		
	TDS (Calculated)	1010			mg/L		21-FEB-06		
	Hardness (as CaCO3)	11			mg/L		21-FEB-06		
ICP me	Calcium (Ca)	2.6		0.F	mall		21 550 00	DAT	D074044
	Potassium (K)	0.0		0,5	mg/L		21-FED-00	DA7	D274344
	i oluodulii (iv)	0.9		0.1	mg/L		21-1 CD-00	RAZ	1374344

Sample Detai	ls/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L364427-2 Sample By: Matrix: Routine ICP me	ROUTINE 2 NOT PROVIDED on 17-FEB-06 @ 09:00 WATER Water Analysis tals for routine water Magnesium (Mg) Sodium (Na)	0.4 398		0.1 1	mg/L mg/L		21-FEB-06 21-FEB-06	RAZ RAZ	R374344 R374344
	* Refer to Referenced Information for Qualifi	ers (if anv) and M	ethodology.						
		. ,,	- Gy						
			1.000						

WORLEYPARSONS KOMEX Attention: KIMBERLEY MCLEISH Client Project #: C63630000 P.O. #: Site Reference: VALHALLA FARMS

Sample Description	:	VALHALLA FARMS KITCHEN TAP	Maxxam Sample I
Sample Date & Time	:	2006/02/17 9:30	Maxxam Job Num
Sampled By	:	KM	Sample Access
Sample Type	:	Grab	Sample Matrix
Sample Received Dat	te	2006/02/17	Report Date
Sample Station Code	:		

Number : A59022 ber CA606517 : • Water : 2006/02/23 :

PARAMETER DESCRIPTION	RESULTS	Units	QA/QC	MDL	RDL	meq/L
			Batch			
Calculated Parameters						
Hardness (CaCO3)	9.8	mg/L	1050140	0.5	1	
Ion Balance	0.97	N/A	1050141	0.01	0.02	
Total Dissolved Solids	1050	mg/L	1050148	10	20	
Misc. Inorganics						
Conductivity	1850	uS/cm	1051015	1	2	
рН	8.44	N/A	1051014	0.01	0.02	
Anions						
Alkalinity (PP as CaCO3)	11.7	mg/L	1051012	0.5	1	
Alkalinity (Total as CaCO3)	718	mg/L	1051012	0.5	1	
Bicarbonate (HCO3)	847	mg/L	1051012	0.5	1	13.885
Carbonate (CO3)	14.0	mg/L	1051012	0.5	1	0.467
Dissolved Fluoride (F)	1.61	mg/L	1051018	0.05	0.1	
Hydroxide (OH)	<0.5	mg/L	1051012	0.5	1	
Sulphate (SO4)	3.3	mg/L	1052001	0.5	1	0.069
Chloride (Cl)	180	mg/L	1051984	0.5	1	5.070
Nutrients						
Dissolved Nitrate (N)	<0.003	mg/L	1052004	0.003	0.006	
Dissolved Nitrite (N)	<0.003	mg/L	1052004	0.003	0.006	
Nitrate plus Nitrite (N)	<0.003	mg/L	1050145	0.003	0.006	
Physical Properties						
Turbidity	2.6	NTU	1050711	0.1	0.2	

N/A = Not Applicable RDL = Reportable Detection Limit

MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample. Results are not corrected for surrogate or moisture values unless otherwise stated.

WORLEYPARSONS KOMEX Attention: KIMBERLEY MCLEISH Client Project #: C63630000 P.O. #: Site Reference: VALHALLA FARMS

Sample Description:VALHALLA FARMS KITCHEN TAPSample Date & Time:2006/02/17 9:30Sampled By:KMSample Type:GrabSample Received Date2006/02/17Sample Station Code:

Maxxam Sample Number:A59022Maxxam Job Number:CA606517Sample Access::Sample Matrix:WaterReport Date:2006/02/23

Elements by Atomic Spectroscopy

PARAMETER DESCRIPTION	RESULTS	Units	QA/QC Batch	MDL	RDL	meq/L
Cations						
Dissolved Calcium (Ca)	3.4	mg/L	1052771	0.3	0.6	0.170
Dissolved Magnesium (Mg)	(0.3)	mg/L	1052771	0.2	0.4	0.025
Dissolved Potassium (K)	0.6	mg/L	1052771	0.3	0.6	0.015
Dissolved Sodium (Na)	431	mg/L	1052771	0.5	1	18.747
Dissolved Iron (Fe)	(0.01)	mg/L	1052771	0.01	0.02	0.000
Dissolved Manganese (Mn)	< 0.004	mg/L	1052771	0.004	0.008	

RDL = Reportable Detection Limit

MDL = Method Detection Limit - Calculated on the basis of the instrument detection level, the dilution used, and the weight of the sample.

() = Result < RDL and is subject to reduced levels of confidence

Results are not corrected for surrogate or moisture values unless otherwise stated.

Metals by ICP, Major cations, Fe and Mn - Matrix spike exceeds acceptance limits for Na, due to matrix interference. Re-analysis yields similar results.

060301-20

CERTIFICATE OF ANALYSIS

Table 1. Water Samples: Iron Bacteria:

PBR LAB ID	Client Sample ID	CFU / 100ml Iron Bacteria (Protocol # 1203)
06-NW-01	Valhalla Farms Kitchen Tap #1	$1.0 \ge 10^3$
06-NW-02	Valhalla Farms Kitchen Tap #2	2.5×10^3

Note: Microbial count is in Colony Forming Units (CFU).

Table 2. Water Samples: Sulphate Reducing Bacteria

PBR Lab ID	Client Sample ID	CFU / ml Sulphate Reducing Bacteria		
06-NW-01	Valhalla Farms Kitchen Tap #1	<1*		
06-NW-02	Valhalla Farms Kitchen Tap #2	<1*		

Note: Microbial count is in Colony Forming Units (CFU). * no bacteria was present.

Jennifer Chiang (Analyst) DATE: 060306 Reviewed: Mesishnei

Ram D. Mehta, Ph.D., P.Biol DATE: 06 03 06

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
1379038-3 1								
Sample By: I M on 12-APR-06 @ 11:30					1			
Matrix: WATER								
Total Metals								
Total Trace Metals			1.0			1		
Silver (Ag)	< 0.005		0.005	mg/L		17-APR-06	QLI	R390447
Aluminum (AI)	2.06		0.01	mg/L	4 C - C - C - C - C - C - C - C - C - C	17-APR-06	QLI	R390447
Boron (B)	0.32		0.05	mg/L	1 .	17-APR-06	QLI	R390447
Barium (Ba)	0.130		0.003	mg/L	1000	17-APR-06	QLI	R390447
Beryllium (Be)	< 0.002		0.002	mg/L		17-APR-06	QLI	R390447
Cadmium (Cd)	< 0.001		0.001	mg/L		17-APR-06	QLI	R390447
Cobalt (Co)	< 0.002		0.002	mg/L		17-APR-06	QLI	R390447
Chromium (Cr)	< 0.005		0.005	mg/L		17-APR-06	QLI	R390447
Copper (Cu)	0.003		0.001	mg/L		17-APR-06	QLI	R390447
Molybdenum (Mo)	0.006		0.005	mg/L		17-APR-06	QLI	R390447
Nickel (Ni)	0.002		0.002	mg/L		17-APR-06	QLI	R390447
Lead (Pb)	< 0.005		0.005	mg/L	1.1.1.1.1.1	17-APR-06	QLI	R390447
Tin (Sn)	< 0.05		0.05	mg/L		17-APR-06	QLI	R390447
Strontium (Sr)	0.103		0.002	mg/L		17-APR-06	QLI	R390447
Titanium (Ti)	0.034		0.001	mg/L		17-APR-06	QLI	R390447
Thallium (TI)	< 0.05		0.05	mg/L		17-APR-06	QLI	R390447
Vanadium (V)	0.003		0.001	mg/L		17-APR-06	QLI	R390447
Zinc (Zn)	0.012		0.001	mg/L		17-APR-06	QLI	R390447
Total Major Metals			2.42					5 12 12 P
Calcium (Ca)	4.1		0.5	mg/L		19-APR-06	SYF	R390913
Potassium (K)	1.2		0.1	mg/L		19-APR-06	SYF	R390913
Magnesium (Mg)	0.7		0.1	mg/L		19-APR-06	SYF	R390913
Sodium (Na)	420		1	mg/L		19-APR-06	SYF	R390913
Iron (Fe)	4.47		0.005	mg/L		19-APR-06	SYF	R390913
Manganese (Mn)	0.028		0.001	mg/L		19-APR-06	SYF	R390913
Methane, dissolved	42.4		0.005	mg/L		13-APR-06	NOS	R390592
BTEX								
Benzene	< 0.0005		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R390502
Toluene	0.0086		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R390502
Ethylbenzene	< 0.0005		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R390502
Xylenes	<0.0005		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R390502
Routine Water Analysis			1.4					
Chloride (Cl)	177		0.1	mg/L	13-APR-06	13-APR-06	LHH	R390051
Nitrate+Nitrite-N	< 0.05		0.05	mg/L	13-APR-06	13-APR-06	LHH	R390051
Nitrate-N	< 0.05		0.05	mg/L	13-APR-06	13-APR-06	LHH	R390051
Nitrite-N	< 0.05		0.05	mg/L	13-APR-06	13-APR-06	LHH	R390051
Sulphate (SO4)	1.5		0.5	mg/L	13-APR-06	13-APR-06	LHH	R390051
pH, Conductivity and Total Alkalinity					1	Ten for		System Co. Payr
pН	8.3		0.1	pH		19-APR-06	JF	R390673
Conductivity (EC)	1810		3	uS/cm		19-APR-06	JF	R390673
Bicarbonate (HCO3)	826		5	mg/L		19-APR-06	JF	R390673
Carbonate (CO3)	<5		5	mg/L		19-APR-06	JF	R390673
Hydroxide (OH)	<5		5	mg/L	1.1.1.1	19-APR-06	JF	R390673
Alkalinity, Total (as CaCO3)	683		5	mg/L		19-APR-06	JF	R390673
Ion Balance Calculation	06.9			0/		20-428-06		
TDS (Calculated)	1000			70 ma/l		20-400 06		
Hardness (as CaCO3)	1000			mg/L		20.400 06		
ICP metals for routine water				mg/L	1	20-41-12-00		

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
1 379038-3 1					10.01			
Sample By: I M on 12-APR-06 @ 11:30								
Matrix: WATED								
Routine Water Analysis								
ICP metals for routine water								1
Calcium (Ca)	3.6		0.5	mg/L		13-APR-06	RAZ	R389500
Potassium (K)	1.0		0.1	mg/L		13-APR-06	RAZ	R389500
Magnesium (Mg)	0.6		0.1	mg/L		13-APR-06	RAZ	R389500
Sodium (Na)	407		1	mg/L		13-APR-06	RAZ	R389500
L379038-4 2								
Sample By: LM on 12-APR-06 @ 11:30								
Matrix: WATER			- 1		{			
Total Metals			1.1					
Total Trace Metals						S. Acres 1		Last of
Silver (Ag)	<0.005		0.005	mg/L		17-APR-06	QLI	R390447
Aluminum (AI)	3.45		0.01	mg/L		17-APR-06	QLI	R390447
Boron (B)	0.32		0.05	mg/L		17-APR-06	QLI	R390447
Barium (Ba)	0.134		0.003	mg/L		17-APR-06	QLI	R390447
Beryllium (Be)	<0.002		0.002	mg/L		17-APR-06	QLI	R390447
Cadmium (Cd)	<0.001		0.001	mg/L		17-APR-06	QLI	R390447
Cobalt (Co)	<0.002		0.002	mg/L	1	17-APR-06	QLI	R390447
Chromium (Cr)	<0.005		0.005	mg/L		17-APR-06	QLI	R390447
Copper (Cu)	0.009		0.001	mg/L		17-APR-06	QLI	R390447
Molybdenum (Mo)	0.006		0.005	mg/L		17-APR-06	QLI	R390447
Nickel (Ni)	0.002		0.002	mg/L		17-APR-06	QLI	R390447
Lead (Pb)	<0.005		0.005	mg/L		17-APR-06	QLI	R390447
Tin (Sn)	< 0.05		0.05	mg/L	0.1	17-APR-06	QLI	R390447
Strontium (Sr)	0.118		0.002	mg/L		17-APR-06	QLI	R390447
Titanium (Ti)	0.049		0.001	mg/L		17-APR-06	QLI	R390447
Thallium (TI)	< 0.05		0.05	mg/L		17-APR-06	QLI	R390447
Vanadium (V)	0.004		0.001	mg/L		17-APR-06	QLI	R390447
Zinc (Zn)	0.012		0.001	mg/L		17-APR-06	QLI	R390447
Total Major Metals	5.2		0.5	mall		10 APP 06	CVE	P300013
Potossium (K)	5.5		0.5	mg/L		19-APR-06	SVE	R390913
Magnesium (Mg)	1.5		0.1	mg/L		19-APR-06	SVE	R300013
Sodium (Na)	126		1	mg/L		19-APR-06	SVE	R390913
Iron (Fe)	420		0.005	mg/L		19-APR-06	SVE	R390913
Manganese (Mn)	0.029		0.000	mg/L	(h) (c)	19-APR-06	SYF	R390913
Methane, dissolved	35.78		0.005	mg/L	1	13-APR-06	NOS	R390592
BIEX	<0.0005		0.0005	ma/l	17-APR-06	17-APR-06	KER	P300502
Toluene	0.0005		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R300502
Ethylbenzene	<0.0076		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R390502
Xvlenes	<0.0005		0.0005	mg/L	17-APR-06	17-APR-06	KEB	R390502
Routine Water Analysis	-0.0005		0.0005	ingri	17 74 1000	11-74 1000	NED	11000002
Chloride (CI)	177		0.1	ma/l	13-APR-06	13-APR-06	тнн	R390051
Nitrata+Nitrita N	<0.05		0.05	mall	13-APR-06	13-APR-06	LAP	R300051
Nicato N	NU.05		0.05	mg/L	13 ADD 00	13 ADD 06	LUU	D200054
NITALE-IN	<0.05		0.05	mg/L	13-APR-00	13-APR-00	LHH	R390051
Nitrite-N	<0.05		0.05	mg/L	13-APR-06	13-APR-06	LHH	R390051
Sulphate (SO4)	1.3		0.5	mg/L	13-APR-06	13-APR-06	LHH	R390051
pH, Conductivity and Total Alkalinity	0.4		0.4	-		10.000 00	1C	P300673
рп	0.4		0.1	рп		13-AF R-00	JF	1390013
					1			

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
1.379038-4 2								
Sample By: I M on 12-APR-06 @ 11:30								
Matrix: WATER								
Routine Water Analysis								
pH, Conductivity and Total Alkalinity								1.
Conductivity (EC)	1860		3	uS/cm		19-APR-06	JF	R390673
Bicarbonate (HCO3)	802		5	mg/L		19-APR-06	JF	R390673
Carbonate (CO3)	21		5	mg/L		19-APR-06	JF	R390673
Hydroxide (OH)	<5		5	mg/L		19-APR-06	JF	R390673
Alkalinity, Total (as CaCO3)	692		5	mg/L		19-APR-06	JF	R390673
Ion Balance Calculation	05.4			01				
ION Balance	95.1			%		20-APR-06		
Hardness (as CaCO3)	1010			mg/L		20-APR-00		
ICP motals for routing water	10			mg/L		20-AFR-00		
Calcium (Ca)	32		0.5	ma/L		13-APR-06	RA7	R389500
Potassium (K)	1.0		0.0	mg/L		13-APR-06	RAZ	R389500
Magnesium (Mg)	0.5		0.1	mg/L		13-APR-06	RAZ	R389500
Sodium (Na)	407		1	mg/L		13-APR-06	RAZ	R389500

Norwes	т	Ana	Analytical Report Analytical Report Fax: (403) 291-2			
Bill to: Fiona Lauridser Report to: Fiona Lauridser Box 681 Rosebud, AB, 0 T0J 2T0 Attn: Fiona Laurid Sampled By: Company:	n n Canada sen	Project ID: Name: Location: LSD: P.O.: Acct. Code	ə:		NWL Lot ID: Control Number: Date Received: Date Reported: Report Number:	456133 E 273480 Apr 13, 2006 Apr 24, 2006 842871
	Sam	NWL Number nple Description Matrix	456133-1 SE 29-26-21 W4M Water	456133-2 Lauridsen - before Water	45613 Lauridser Wate	33-3 n - after er
Analyte		Units	Results	Results	Results	Detection Limit
Methane Content of Water	r					
Methane	Volume Gas / Volume Liquid	mL gas/m³ water	9	65200	101000	5
Methane	Mass / Volume Liquid	mg/L	0.006	42.8	66.3	0.003

Approved by:

C. Surjugeolour?

Chris Swyngedouw, PhD, PChem Consulting Scientist

L431072 CONTD.... PAGE 2 of 4

Sample Detai	ls/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L431072-1 Sampled By: Matrix:	CK090806A CK on 08-SEP-06 @ 11:05 WATER								
	Methane, dissolved	39		0.005	mg/L	08-SEP-06	08-SEP-06	RLB	R441986
L431072-4 Sampled By: Matrix:	CK090806B CK on 08-SEP-06 @ 11:35 WATER								
	Methane, dissolved	45		0.005	mg/L	08-SEP-06	08-SEP-06	RLB	R441986
L431072-7 Sampled By: Matrix:	CK090806C CK on 08-SEP-06 @ 11:05 WATER								
	Free CO2	<1		1	mg/L		11-SEP-06	SHT	R440448
L431072-10 Sampled By: Matrix:	CK090806D CK on 08-SEP-06 @ 11:35 WATER								
	Free CO2	<1		1	mg/L		11-SEP-06	SHT	R440448
L431072-13 mpled By: Matrix:	CK090806M CK on 08-SEP-06 @ 13:15 WATER	<0.005		0.005	ma/l	08 SED 06	08.SED.06	DIB	P441086
1 421072 16	0970442	<0.005	_	0.005	IIIg/L	00-3EF-00	00-3LF-00	RLD	R441900
Sampled By: Matrix:	CK on 08-SEP-06 @ 11:35 WATER								
TC and	EC by MPN MPN - Total Coliforms MPN - E. coli	1 <1		1	MPN/100mL MPN/100mL		11-SEP-06 11-SEP-06	RBD RBD	R440205 R440205
L431072-17	CK090806 E								
Sampled By: Matrix:	CK on 08-SEP-06 @ 11:05 WATER								
Routine V	Water Analysis Chloride (Cl)	203		0.1	mg/L	11-SEP-06	11-SEP-06	LHH	R440650
	Calcium (Ca) Potassium (K) Magnesium (Mg) Sodium (Na)	1.6 0.8 0.3 403		0.5 0.1 0.1 1	mg/L mg/L mg/L mg/L		12-SEP-06 12-SEP-06 12-SEP-06 12-SEP-06	MAT MAT MAT MAT	R441116 R441116 R441116 R441116
Ion Bala	ance Calculation Ion Balance TDS (Calculated) Hardness (as CaCO3)	87.8 1040 5			% mg/L mg/L		13-SEP-06 13-SEP-06 13-SEP-06		
	Nitrate+Nitrite-N	<0.05		0.05	mg/L	11-SEP-06	11-SEP-06	LHH	R440650
	Nitrate-N	< 0.05		0.05	mg/L	11-SEP-06	11-SEP-06	LHH	R440650
	NITITE-N	< 0.05		0.05	mg/L	11-SEP-06	11-SEP-06	LHH	R440650
pH, Cor	ductivity and Total Alkalinity	<u.5< td=""><td></td><td>0.5</td><td>ing/L</td><td>11-322-00</td><td>11-3EP-00</td><td>LUH</td><td>1440000</td></u.5<>		0.5	ing/L	11-322-00	11-3EP-00	LUH	1440000

L431072 CONTD.... PAGE 3 of 4

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch	
L431072-17 CK090806 E Sampled By: CK on 08-SEP-06 @ 11:05 Matrix: WATER Routine Water Analysis									
pH, Conductivity and Total Alkalinity			0.4			11 000 00	OK	D440054	
pH Conductivity (EC)	8.6		0.1	pH uS/cm		11-SEP-06	GK	R440254	
Bicarbonate (HCO3)	826		5	ma/l		11-SEP-06	GK	R440254	
Carbonate (CO3)	25		5	mg/L		11-SEP-06	GK	R440254	
Hydroxide (OH)	<5		5	mg/L		11-SEP-06	GK	R440254	
Alkalinity, Total (as CaCO3)	718		5	mg/L		11-SEP-06	GK	R440254	
L431072-18 CK090806 F									
Sampled By: CK on 08-SEP-06 @ 11:35									
Matrix: WATER									
Routine Water Analysis									
Chloride (Cl)	195		0.1	mg/L	11-SEP-06	11-SEP-06	LHH	R440650	
ICP metals for routine water									
Calcium (Ca)	1.8		0.5	mg/L		12-SEP-06	MAT	R441116	
Potassium (K)	0.8		0.1	mg/L		12-SEP-06	MAT	R441116	
Sodium (Mg)	0.3		0.1	mg/L		12-SEP-00	MAT	R441116	
Ion Balance Calculation	432			IIIg/L		12-327-00	IVIA I	R441110	
Ion Balance	95.3			%		13-SEP-06			
TDS (Calculated)	1060			mg/L		13-SEP-06			
Hardness (as CaCO3)	6			mg/L		13-SEP-06			
Nitrate+Nitrite-N	<0.05		0.05	mg/L	11-SEP-06	11-SEP-06	LHH	R440650	
Nitrate-N	<0.05		0.05	mg/L	11-SEP-06	11-SEP-06	LHH	R440650	
Nitrite-N	<0.05		0.05	mg/L	11-SEP-06	11-SEP-06	LHH	R440650	
Sulphate (SO4)	1.3		0.5	mg/L	11-SEP-06	11-SEP-06	LHH	R440650	
pH, Conductivity and Total Alkalinity									
pH	8.6		0.1	pН		11-SEP-06	GK	R440254	
Conductivity (EC)	1800		3	uS/cm		11-SEP-06	GK	R440254	
Bicarbonate (HCO3)	815		5	mg/L		11-SEP-06	GK	R440254	
	29		5	mg/L		11-SEP-06	GK	R440254	
Alkalinity Total (as CaCO3)	717		5	mg/L		11-SEP-06	GK	R440254	
	, , ,			ing/c			OIL	11440204	

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

184 1.4		0.1					
184 1.4		0.1	-				
184 1.4		0.1					
184 1.4		0.1	201				
184 1.4		01			the second se		1.00
1.4		0.1	mg/L		08-DEC-06		R474213
		0.1	mg/L		08-DEC-06		R474213
10.0		1.5.					1212222
1.3		0.5	mg/L		13-DEC-06	MAT	R475594
1.5		0.1	mg/L		13-DEC-06	MAT	R475594
0.2		0.1	mg/L		13-DEC-06	TAM	R475594
403		1	mg/L		10-020-00		114/0004
86.8	RRV		%		13-DEC-06		
1050			mg/L		13-DEC-06		
4			mg/L		13-DEC-06		
0.05		0.01	mg/L		13-DEC-06	MAT	R475594
1.79		0.01	mg/L		12-DEC-06		R474950
9000		25	CFU/mL	07-DEC-06	17-DEC-06	DJK	R476725
< 0.01		0.01	mg/L		13-DEC-06	MAT	R475594
0.02		0.01	mg/L	0	12-DEC-06		R474950
<0.07		0.07	mg/L		11-DEC-06		
<0.05		0.05	mg/L		08-DEC-06		R474213
<0.05		0.05	mg/L		08-DEC-06		R474213
3.4		0.5	mg/L	f	08-DEC-06		R474213
700000		200	CFU/mL	07-DEC-06	17-DEC-06	DJK	R476721
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
8.5		0.1	pH		08-DEC-06	GK	R474466
1830		3	uS/cm		08-DEC-06	GK	R474466
871		5	mg/L		08-DEC-06	GK	R474466
22	1	5	mg/L		08-DEC-06	GK	R474466
<5		5	mg/L		08-DEC-06	GK	R474466
751		5	mg/L		08-DEC-06	GK	R474466
<1		1	CFU/100mL		07-DEC-06	BC	R474505
<1		1	CFU/100mL		07-DEC-06	BC	R474505
ualifiers (if any) and	Methodolog	у.					
	1.5 0.2 403 86.8 1050 4 0.05 1.79 9000 <0.01 0.02 <0.07 <0.05 <0.05 3.4 700000 8.5 1830 871 22 <5 751 <1 <1 <1 <1	1.5 0.2 403 86.8 RRV 1050 4 0.05 1.79 9000 <0.01 0.02 <0.07 <0.05 <0.05 3.4 700000 8.5 1830 871 22 <5 751 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	1.5 0.1 0.2 0.1 403 1 86.8 RRV 1050 4 0.05 0.01 1.79 0.01 9000 25 <0.01	1.5 0.1 mg/L 0.2 0.1 mg/L 403 1 mg/L 86.8 RRV % 1050 mg/L mg/L 4 mg/L mg/L 0.05 0.01 mg/L 0.05 0.01 mg/L 9000 25 CFU/mL <0.01	1.5 0.1 mg/L 0.2 0.1 mg/L 403 1 mg/L 86.8 RRV % 1050 mg/L mg/L 4 mg/L mg/L 0.05 0.01 mg/L 1.79 0.01 mg/L 9000 25 CFU/mL 07-DEC-06 <0.01	1.5 0.1 mg/L 13-DEC-06 0.2 0.1 mg/L 13-DEC-06 403 1 mg/L 13-DEC-06 86.8 RRV % 13-DEC-06 1050 mg/L 13-DEC-06 4 mg/L 13-DEC-06 0.05 0.01 mg/L 13-DEC-06 0.05 0.01 mg/L 13-DEC-06 9000 25 CFU/mL 07-DEC-06 9000 25 CFU/mL 07-DEC-06 0.02 0.01 mg/L 13-DEC-06 0.02 0.01 mg/L 13-DEC-06 0.02 0.01 mg/L 12-DEC-06 <0.07	1.5 0.1 mg/L 13-DEC-06 MAT 0.2 0.1 mg/L 13-DEC-06 MAT 403 1 mg/L 13-DEC-06 MAT 86.8 RRV % 13-DEC-06 MAT 96.8 RRV % 13-DEC-06 MAT 1.79 0.01 mg/L 13-DEC-06 MAT 9000 25 CFU/mL 07-DEC-06 DJK <0.01

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L460566-1 C64340345 Sampled By: MEGAN CAWTHORPE on 06-DEC-06 (@ 09:38							
Matrix: GAS					1			
C1-C4 GC/FID Vapor Scan								
Methane	88,0000		5	ppm		11-DEC-06	RSM	R474709
Ethane	<5		5	ppm		11-DEC-06	RSM	R474709
Butane	<5		5	ppm		11-DEC-06	RSM	R474709
Carbon Dioxide	1600		10	ppm		12-DEC-06	CVD	R475259
Nitrogen	11		1	%		12-DEC-06	CVD	R475259
Oxygen	1.70		0.1	%		12-DEC-06	CVD	R475259
* Refer to Referenced Information for C	Qualifiers (if any) and I	Methodolog	y.					
						1		
						6		
		-						

Page 2 of 2

ISOTO Dept o Univer 2500 L T2N-11	PE SCIENCE LABORATORY f Physics and Astronomy sity of Calgary Iniversity Dr. NW, Calgary, Alta Na	i.	<u>Results</u> Contact Tel. Fax e-mail	: S. Taylor : (403) 220-8268 : (403) 220 7773 : taylors@pbas.u	ralgan, ca					
Name:	Kristina Flage ALS Laboratory Services 1313 44 Ave NE		<u>G-Ingi</u>	. taylois@phas.ut	calgary.ca		-			
	Calgary, Alberta, Canada T2E 6L5		phone: fax: email:	1-403-291-9897 1-403-291-0298 kristina.flagel@al:	senviro.com					
Project		12	1 -12 -	1 -13-	1 .13	1 -13-	130	1	122 22 1	
1 #	Sampla Namo	S"Court	A Con	A Good	A Good	O George	0 Gace	CH. (%)	CO _a (%) (Comments	

#	Sample Name	δ"C _{CH4}	δ ^{ro} C _{C2}	δ°C _{CO2}	8°C _{C3}	δ [™] C _{iC4}	8 CnC4	CH ₄ (%)	$CO_2(\%)$	Comments	
5	C64340345 (Encana)	-62.8		-1.0				88	0.16		L460535

$\delta^{13}\mbox{C-PDB}$ of Hydrocarbon gases (GCC-IRMS)

IAEA values used to normalize data		¹³ C
	NBS 18	-5.1 ± 0.1
	NBS 19	1.95 (b.d.)
	Messer CO21	-0.29 ± 0.20
	Messer CO2 II	-40.13 ± 0.17
Precision and accuracy as 1 sigma of (n=10) lab stds are:	0.5	for 813C

note: (b.d.) = 'by definitiion'

L514150 CONTD PAGE 2 of 5

L14150-1 RAW WATER LAURIDSEN WELL Fail	Sample Details	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
Sample By: HVD1 on 05-JUN-07 (@ 13.30 Kalman Matrix::::::::::::::::::::::::::::::::::::	1514150-1	BAW WATER LAURIDSEN WELL								
Matrix: WATER WATER Number of the second	Sampled By:	HVD.I on 05-IUN-07 @ 13:30								
Total Marias Image	Matrix:	WATER				1				
Total Major Metals Solution Solution <td>Total Met</td> <td>als</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total Met	als								
Catalam (Ca) 3.6 0.5 mg/L 12-UIN-07 SYF R53402 Magnesium (Mg) 0.4 0.1 mg/L 12-UIN-07 SYF R53402 Sodium (Na) 0.09 0.005 mg/L 12-UIN-07 SYF R53402 Ion (Fe) 0.321 0.005 mg/L 12-UIN-07 SYF R53402 Manganase (Mn) 0.004 0.001 mg/L 12-UIN-07 SYF R53402 Auminum (A) 0.04 0.005 mg/L 12-UIN-07 SYF R534422 Boron (B) 0.29 0.05 mg/L 12-UIN-07 CVM R53422 Berylium (Be) 0.177 0.03 mg/L 12-UIN-07 CVM R53422 Cobalt (Co) <0.005	Total Ma	ior Metals								
Polasium (k) 0.8 0.1 mg/L 12-JUN-07 SYF R53402 Sodium (Na) 0.09 0.001 mg/L 12-JUN-07 SYF R53402 Manganese (Mn) 0.021 0.005 mg/L 12-JUN-07 SYF R53402 Total Trace Metals	rotur ma	Calcium (Ca)	3.6		0.5	ma/L		12-JUN-07	SYF	R534402
Magnesim (Ma) Solum (Na) 0.4 (Magnese (Mn) 0.4 (Magnese (Mn) 0.321 (Magnese (Mn) 0.331 (Magnese (Mn) Magnese (Mn) Syste RS34402 (Magnese (Mn) Total Trace Metals Tack (Magnese (Mn)) 0.04 0.06 mgl 12.JUN-07 CVM RS34422 Barlum (Ba) 0.117 0.003 mgl 12.JUN-07 CVM RS34422 Cobalt (Co) <0.001		Potassium (K)	0.8		0.1	mg/L		12-JUN-07	SYF	R534402
Sodiur (Na) 409 1 mgL 12-UN-07 SYF R33402 Manganese (Mn) 0.004 0.001 mgL 12-UN-07 SYF R33402 Total Trace Metals		Magnesium (Mg)	0.4		0.1	mg/L		12-JUN-07	SYF	R534402
Iron (Fe) 0.321 0.001 mgL 12.JUN-07 SYF R33402 Toiat Trace Metals 0.004 0.001 mgL 12.JUN-07 CVI R34422 Aluminum (A) 0.04 0.05 mgL 12.JUN-07 CVI R34422 Boron (B) 0.29 0.88 mgL 12.JUN-07 CVI R34422 Barium (Ba) 0.117 0.008 mgL 12.JUN-07 CVI R834422 Cadmium (Ca) 0.008 0.002 mgL 12.JUN-07 CVI R834422 Cadmium (Ca) -0.002 0.002 mgL 12.JUN-07 CVI R834422 Cabel (Co) -0.001 0.001 0.001 mgL 12.JUN-07 CVI R83422 Cabel (Co) 0.001 0.001 0.001 mgL 12.JUN-07 CVI R83422 Molydenum (Mo) 0.005 mgL 12.JUN-07 CVI R83422 Tin (Sr) -0.05 0.05 mgL 12.JUN-07 CVI		Sodium (Na)	409		1	mg/L		12-JUN-07	SYF	R534402
Manganese (Mn) 0.004 0.001 mg/L 12-JUN-07 SYF R33402 Total Tree Metals -0.005 RAMB 0.005 mg/L 12-JUN-07 CVM R534422 Aluminum (A) 0.04 0.01 mg/L 12-JUN-07 CVM R534422 Barium (Ba) 0.117 0.003 mg/L 12-JUN-07 CVM R534422 Cadmium (Cd) -0.001 0.001 mg/L 12-JUN-07 CVM R534422 Coball (Co) -0.002 0.002 mg/L 12-JUN-07 CVM R534422 Coball (Co) -0.002 0.005 mg/L 12-JUN-07 CVM R534422 Copper (Cu) 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Lead (Pb) -0.005 0.005 mg/L 12-JUN-07 CVM R534422 Tin (Sn) -0.05 0.005 mg/L 12		Iron (Fe)	0.321		0.005	mg/L		12-JUN-07	SYF	R534402
Total Trace Metals RAMB 0.05 RAMB 0.01 mg/L 1.2.JUN-07 CVM R534422 Boron (B) 0.29 0.05 mg/L 12.JUN-07 CVM R534422 Barum (Ba) 0.117 0.003 mg/L 12.JUN-07 CVM R534422 Cadmium (Ca) 0.001 0.002 mg/L 12.JUN-07 CVM R534422 Cadmium (Ca) -0.002 0.002 mg/L 12.JUN-07 CVM R534422 Chombium (Cr) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12.JUN-07 CVM R534422 Lead (Pb) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Strontium (Sr) -0.05 0.005 mg/L 12.JUN-07 CVM R534422 Trainium (Tr) -0.05 0.005 mg/L 12.JUN-07 CVM R534422 Zino (Zn) -0.043 0.001 <td< td=""><td></td><td>Manganese (Mn)</td><td>0.004</td><td></td><td>0.001</td><td>mg/L</td><td></td><td>12-JUN-07</td><td>SYF</td><td>R534402</td></td<>		Manganese (Mn)	0.004		0.001	mg/L		12-JUN-07	SYF	R534402
Silver (Ag) -0.005 RMM 0.005 mg/L 12-JUN-07 CVM R534422 Boron (B) 0.29 0.05 mg/L 12-JUN-07 CVM R534422 Barum (Ba) 0.117 0.03 mg/L 12-JUN-07 CVM R534422 Barum (Ba) 0.017 0.03 mg/L 12-JUN-07 CVM R534422 Cadmium (Cd) -0.002 0.001 mg/L 12-JUN-07 CVM R534422 Cobait (Co) -0.002 0.002 mg/L 12-JUN-07 CVM R534422 Cobait (Co) -0.002 0.005 mg/L 12-JUN-07 CVM R534422 Coper (Cu) 0.001 0.005 mg/L 12-JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Tin (Sh) -0.005 0.005 mg/L 12-JUN-07 CVM R534422 Tin alum (Ti) -0.05 0.001 mg/L 12-JUN-07	Total Tra	ace Metals		1000	1.1.1.1					1
Aluminur (A) 0.04 0.01 mg/L 12UN-07 CVM R53.422 Barium (Ba) 0.117 0.03 mg/L 12UN-07 CVM R53.422 Berylium (Ba) 0.006 0.002 mg/L 12UN-07 CVM R53.422 Cadmiun (Ca) -0.001 0.001 mg/L 12UN-07 CVM R53.422 Coball (Ca) -0.001 0.001 mg/L 12UN-07 CVM R53.422 Coball (Ca) -0.005 0.005 mg/L 12UN-07 CVM R53.422 Molybdenum (Ma) 0.005 0.005 mg/L 12UN-07 CVM R53.422 Molybdenum (Ma) -0.005 0.005 mg/L 12UN-07 CVM R53.422 Molybdenum (Ma) -0.005 0.005 mg/L 12UN-07 CVM R53.422 Tin (Sh) -0.005 0.005 mg/L 12UN-07 CVM R53.422 Tin (Sh) -0.01 0.01 mg/L 12UN-07		Silver (Ag)	< 0.005	RAMB	0.005	mg/L		12-JUN-07	CVM	R534422
Boron (B) 0.29 0.65 mg/L 12-JUN-07 CVM R53422 Baryillum (Be) 0.008 0.002 mg/L 12-JUN-07 CVM R53422 Cadmium (Ca) -0.001 0.001 mg/L 12-JUN-07 CVM R53422 Cobalt (Co) -0.002 0.002 mg/L 12-JUN-07 CVM R53422 Cobalt (Co) -0.001 0.001 mg/L 12-JUN-07 CVM R53422 Copper (Cu) 0.001 0.005 0.005 mg/L 12-JUN-07 CVM R53422 Molybdenum (Mo) 0.005 0.005 mg/L 12-JUN-07 CVM R53422 Lead (Pb) -0.005 0.005 mg/L 12-JUN-07 CVM R53422 Tin (Sn) -0.05 0.005 mg/L 12-JUN-07 CVM R53422 Strontium (Sr) -0.05 0.001 mg/L 12-JUN-07 CVM R53422 Tianium (Ti) -0.05 0.001 mg/L 12-JUN-07 <t< td=""><td></td><td>Aluminum (Al)</td><td>0.04</td><td>1</td><td>0.01</td><td>mg/L</td><td></td><td>12-JUN-07</td><td>CVM</td><td>R534422</td></t<>		Aluminum (Al)	0.04	1	0.01	mg/L		12-JUN-07	CVM	R534422
Barlum (Ba) 0.117 0.03 mg/L 12.JUN-07 CVM R534422 Gadmium (Cd) -0.001 0.002 mg/L 12.JUN-07 CVM R534422 Coball (Co) -0.002 0.002 mg/L 12.JUN-07 CVM R534422 Chromium (Cr) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12.JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12.JUN-07 CVM R534422 Lead (Pb) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Strontium (Sr) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Tinalium (T1) -0.001 0.001 mg/L 12.JUN-07 CVM R534422 Vanadum (V) -0.011 0.001 mg/L 12.JUN-07 CVM R534422 Jine (Ca) -0.011 0.011 mg/L 12.JUN-07		Boron (B)	0.29		0.05	mg/L		12-JUN-07	CVM	R534422
Beryllum (Be) 0.008 0.022 mg/L 12-JUN-07 CVM R534422 Cobalt (Co) -0.002 0.001 mg/L 12-JUN-07 CVM R534422 Cobalt (Co) -0.002 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Corport (Cu) 0.001 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.005 mg/L 12-JUN-07 CVM R534422 Tin (Sn) -0.005 0.005 mg/L 12-JUN-07 CVM R534422 Strontum (Sr) -0.051 0.055 mg/L 12-JUN-07 CVM R534422 Titanium (Ti) -0.051 0.061 mg/L 12-JUN-07 CVM R534422 Zine (Zn) -0.041 0.001 mg/L 12-JUN-07 CVM R53422 Zine (Zn) -0.051 0.061 <t< td=""><td></td><td>Barium (Ba)</td><td>0.117</td><td></td><td>0.003</td><td>mg/L</td><td></td><td>12-JUN-07</td><td>CVM</td><td>R534422</td></t<>		Barium (Ba)	0.117		0.003	mg/L		12-JUN-07	CVM	R534422
Cadmium (Ca) -0.001 mg/L 12.JUN-07 CVM R534422 Cobalt (Ca) -0.005 0.002 mg/L 12.JUN-07 CVM R534422 Copper (Cu) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Copper (Cu) 0.001 0.001 mg/L 12.JUN-07 CVM R534422 Molybdenum (Mo) 0.005 0.002 mg/L 12.JUN-07 CVM R534422 Inicke (N) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Tin (Sn) -0.005 0.005 mg/L 12.JUN-07 CVM R534422 Tinalum (Ti) -0.005 0.005 mg/L 12.JUN-07 CVM R53422 Zine (Zn) -0.015 0.05 mg/L 12.JUN-07 CVM R53422 Zine (Zn) -0.031 0.001 mg/L 12.JUN-07 CVM R53422 Zine (Zn) -0.043 0.001 mg/L 12.JUN-07 CVM R53422 <td></td> <td>Beryllium (Be)</td> <td>0.008</td> <td></td> <td>0.002</td> <td>mg/L</td> <td></td> <td>12-JUN-07</td> <td>CVM</td> <td>R534422</td>		Beryllium (Be)	0.008		0.002	mg/L		12-JUN-07	CVM	R534422
Cobalt (Co) -0.002 mg/L 12-UIN-07 CVM R534422 Copper (Cu) 0.001 0.001 mg/L 12-UIN-07 CVM R534422 Molybdenum (Mo) 0.001 0.001 mg/L 12-UIN-07 CVM R534422 Molybdenum (Mo) 0.005 0.002 mg/L 12-UIN-07 CVM R534422 Lead (Pb) -0.005 0.005 mg/L 12-UIN-07 CVM R534422 Tin (Sn) -0.05 0.05 mg/L 12-UIN-07 CVM R534422 Thanium (Ti) -0.05 0.05 mg/L 12-UIN-07 CVM R534422 Vanadium (V) -0.001 0.001 mg/L 12-UIN-07 CVM R53422 Vanadium (V) -0.001 0.001 mg/L 12-UIN-07 CVM R53422 Iron Bacteria 2300 25 CFU/mL 16-UIN-07 R5 R5 Might new clocing Bacteria 700000 200 CFU/mL 16-UIN-07 DK		Cadmium (Cd)	< 0.001		0.001	mg/L		12-JUN-07	CVM	R534422
Chromium (Cr) -0.005 0.005 mg/L 12-UU-07 CVM R534422 Copper (Cu) 0.001 0.005 mg/L 12-UU-07 CVM R534422 Nickel (N) -0.002 0.002 mg/L 12-UU-07 CVM R534422 Lead (Pb) -0.005 0.005 mg/L 12-UU-07 CVM R534422 Line (Pb) -0.005 0.005 mg/L 12-UU-07 CVM R534422 Strontium (Sr) 0.0085 0.000 mg/L 12-UU-07 CVM R534422 Vanadium (V) -0.001 0.001 mg/L 12-UU-07 CVM R53422 Vanadium (V) -0.001 0.001 mg/L 12-UU-07 CVM R53422 Vanadium (V) -0.001 0.001 mg/L 12-UU-07 CVM R53422 June Z 250 CFU/mL 16-UU-07 R58 R58622 Methane, dissolved 33 0.005 mg/L 16-UU-07 R5 R53625 <		Cobalt (Co)	< 0.002		0.002	mg/L		12-JUN-07	CVM	R534422
Copper (Cu) 0.001 0.001 mg/L 12-UN-07 VM R53422 Molybdenum (Mo) 0.002 0.002 mg/L 12-UN-07 CVM R53422 Nickel (N) <0.002		Chromium (Cr)	< 0.005		0.005	mg/L		12-JUN-07	CVM	R534422
Molybdenum (Mo) 0.005 0.005 mg/L 12-JUN-07 CVM R534222 Nickel (Ni) <0.002		Copper (Cu)	0.001		0.001	mg/L		12-JUN-07	CVM	R534422
Nickel (N) <0.002 0.002 mg/L 12-JUN-07 CVM R534222 Lead (Pb) <0.005		Molybdenum (Mo)	0.005		0.005	mg/L		12-JUN-07	CVM	R534422
Lead (Pb) <0.005 0.005 mg/L 12-JUN-07 CVM R534422 Tin (Sn) 0.085 0.002 mg/L 12-JUN-07 CVM R534422 Strontium (Sr) 0.085 0.001 mg/L 12-JUN-07 CVM R534422 Titanium (Ti) <0.001		Nickel (Ni)	< 0.002		0.002	mg/L		12-JUN-07	CVM	R534422
Tin (Sn) <0.05 mg/L 12-JUN-07 CVM R534422 Strontium (Sr) 0.085 0.002 mg/L 12-JUN-07 CVM R534422 Thalium (Ti) <0.005		Lead (Pb)	< 0.005		0.005	mg/L		12-JUN-07	CVM	R534422
Strontium (Sr) 0.085 0.002 mg/L 12-JUN-07 CVM R534422 Titanium (Ti) <0.05		Tin (Sn)	< 0.05		0.05	mg/L	0	12-JUN-07	CVM	R534422
Titanium (Ti) <0.001 0.001 mg/L 12-JUN-07 CVM R534422 Thalium (Ti) <0.05		Strontium (Sr)	0.085		0.002	mg/L		12-JUN-07	CVM	R534422
Thallium (TI) <0.05 mg/L 12-JUN-07 CVM R534422 Vanadium (V) 0.043 0.001 mg/L 12-JUN-07 CVM R534422 Zinc (Zn) 0.043 0.001 mg/L 16-JUN-07 CVM R534422 Iron Bacteria 2300 25 CFU/mL 16-JUN-07 RBD R536220 Methane, dissolved 33 0.005 mg/L 06-JUN-07 06-JUN-07 CFR R536218 Sulfur Reducing Bacteria 700000 200 CFU/mL 06-JUN-07 DJK R536218 MPN - Total Colforms <1		Titanium (Ti)	< 0.001		0.001	mg/L		12-JUN-07	CVM	R534422
Vanadium (V) <0.001 mg/L 12-JUN-07 CVM R534422 Zinc (Zn) 0.043 0.001 mg/L 12-JUN-07 CVM R534422 Iron Bacteria 2300 25 CFU/mL 16-JUN-07 CFM R536220 Methane, dissolved 33 0.005 mg/L 06-JUN-07 CFM R536220 Sulfur Reducing Bacteria 700000 200 CFU/mL 06-JUN-07 DFM R536218 TC and EC by MPN MPN - Total Coliforms <1		Thallium (TI)	< 0.05		0.05	mg/L		12-JUN-07	CVM	R534422
Zinc (Zn) 0.043 0.00 mg/L 12-JUN-07 CVM R534422 Iron Bacteria 2300 25 CFU/mL 16-JUN-07 RBD R53620 Methane, dissolved 33 0.005 mg/L 06-JUN-07 06-JUN-07 0FJUN-07 RBD R536219 Sulfur Reducing Bacteria 700000 200 CFU/mL 16-JUN-07 RBD R536218 TC and EC by MPN 1 MPN/100mL 07-JUN-07 DJK R532152 Major Ions & Dissolved Metals 0.1 mg/L 07-JUN-07 DJK R532152 Major Ions & Dissolved Metals 0.1 mg/L 07-JUN-07 MX R533071 Dissolved Trace Metals 0.01 mg/L 09-JUN-07 MX R533071 Aluminum (Al) <0.01		Vanadium (V)	< 0.001		0.001	mg/L		12-JUN-07	CVM	R534422
Iron Bacteria 2300 25 CFU/mL 16-JUN-07 RBD R536220 Methane, dissolved 33 0.005 mg/L 06-JUN-07 06-JUN-07 CFR R534029 Sulfur Reducing Bacteria 700000 200 CFU/mL 16-JUN-07 RBD R536218 TC and EC by MPN MPN - Total Coliforms <1		Zinc (Zn)	0.043		0.001	mg/L		12-JUN-07	CVM	R534422
Iron Bacteria 2300 25 CFU/mL 16-JUN-07 RBD R536220 Methane, dissolved 33 0.005 mg/L 06-JUN-07 CFR R534029 Sulfur Reducing Bacteria 700000 200 CFU/mL 16-JUN-07 RBD R536218 TC and EC by MPN 1 MPN/100mL 07-JUN-07 DJK R532152 MPN - E. coli <1					1					
Methane, dissolved 33 0.005 mg/L 06-JUN-07 CFR R534029 Sulfur Reducing Bacteria 700000 200 CFU/mL 16-JUN-07 RBD R536218 TC and EC by MPN MPN - Total Coliforms <1		Iron Bacteria	2300		25	CFU/mL		16-JUN-07	RBD	R536220
Sulfur Reducing Bacteria 700000 200 CFU/mL 16-JUN-07 RBD R536218 TC and EC by MPN MPN - Total Coliforms <1		Methane, dissolved	33		0.005	mg/L	06-JUN-07	06-JUN-07	CFR	R534029
TC and EC by MPN All MPN - Total Coliforms <1 1 MPN/100mL 07-JUN-07 DJK R532152 MPN - E. coli <1		Sulfur Reducing Bacteria	700000		200	CFU/mL	1000 C	16-JUN-07	RBD	R536218
MPN - Total Coliforms <1 1 MPN/100mL 07-JUN-07 DJK R532152 Major Ions & Dissolved Metals - 1 MPN/100mL 07-JUN-07 DJK R532152 Major Ions & Dissolved Metals - - mg/L 07-JUN-07 LHH R532152 Dissolved Trace Metals - - mg/L 07-JUN-07 LHH R533071 Aluminum (Al) <0.005	TC and E	EC by MPN			2.52					C CARDAD C.C.
MPN - E. coli <1 MPN/100mL 07-JUN-07 DJK R532152 Major Ions & Dissolved Metals 1 mg/L 07-JUN-07 LHH R532717 Dissolved Trace Metals 1 mg/L 09-JUN-07 LHH R533071 Silver (Ag) <0.005		MPN - Total Coliforms	<1	1 9	1	MPN/100mL		07-JUN-07	DJK	R532152
Major lons & Dissolved Metals Image: Chloride (Cl) 173 0.1 mg/L 07-JUN-07 LHH R532717 Dissolved Trace Metals 0.005 0.005 mg/L 09-JUN-07 MX R533071 Aluminum (Al) <0.01		MPN - E. coli	<1		1	MPN/100mL		07-JUN-07	DJK	R532152
Chloride (Cl) 173 0.1 mg/L 07-JUN-07 LHH R532717 Dissolved Trace Metals -	Major Ion	s & Dissolved Metals				Provide states				
Dissolved Trace Metals < </td <td></td> <td>Chloride (Cl)</td> <td>173</td> <td></td> <td>0.1</td> <td>mg/L</td> <td></td> <td>07-JUN-07</td> <td>LHH</td> <td>R532717</td>		Chloride (Cl)	173		0.1	mg/L		07-JUN-07	LHH	R532717
Silver (Ag) <0.005 mg/L 09-JUN-07 MX R533071 Aluminum (Al) <0.01	Dissolve	d Trace Metals						and have the		
Aluminum (Al)<0.01mg/L09-JUN-07MXR533071Boron (B)0.320.05mg/L09-JUN-07MXR533071Barium (Ba)0.1210.003mg/L09-JUN-07MXR533071Beryllium (Be)<0.001		Silver (Ag)	<0.005		0.005	mg/L		09-JUN-07	MX	R533071
Boron (B) 0.32 0.05 mg/L 09-JUN-07 MX R533071 Barium (Ba) 0.121 0.003 mg/L 09-JUN-07 MX R533071 Beryllium (Be) <0.001		Aluminum (Al)	< 0.01		0.01	mg/L		09-JUN-07	MX	R533071
Barium (Ba) 0.121 0.003 mg/L 09-JUN-07 MX R533071 Beryllium (Be) <0.001		Boron (B)	0.32		0.05	mg/L		09-JUN-07	MX	R533071
Beryllium (Be) <0.001 mg/L 09-JUN-07 MX R533071 Cadmium (Cd) <0.001		Barium (Ba)	0.121		0.003	mg/L		09-JUN-07	MX	R533071
Cadmium (Cd) <0.001 mg/L 09-JUN-07 MX R533071 Cobalt (Co) <0.002		Beryllium (Be)	< 0.001		0.001	mg/L		09-JUN-07	MX	R533071
Cobalt (Co) <0.002 mg/L 09-JUN-07 MX R533071 Chromium (Cr) <0.005		Cadmium (Cd)	< 0.001		0.001	mg/L		09-JUN-07	MX	R533071
Chromium (Cr) <0.005 mg/L 07-JUN-07 HAS R532428 Copper (Cu) <0.001		Cobalt (Co)	< 0.002		0.002	mg/L		09-JUN-07	MX	R533071
Copper (Cu) <0.001 mg/L 09-JUN-07 MX R533071 Molybdenum (Mo) 0.006 0.005 mg/L 09-JUN-07 MX R533071 Nickel (Ni) <0.002		Chromium (Cr)	< 0.005		0.005	mg/L		07-JUN-07	HAS	R532428
Molybdenum (Mo) 0.006 0.005 mg/L 09-JUN-07 MX R533071 Nickel (Ni) <0.002		Copper (Cu)	< 0.001		0.001	mg/L		09-JUN-07	MX	R533071
Nickel (Ni) <0.002 0.002 mg/L 09-JUN-07 MX R533071 Lead (Pb) <0.005		Molybdenum (Mo)	0.006		0.005	mg/L		09-JUN-07	MX	R533071
Lead (Pb) <0.005 0.005 mg/L 09-JUN-07 MX R533071 Tin (Sn) <0.05		Nickel (Ni)	< 0.002		0.002	mg/L		09-JUN-07	MX	R533071
Tin (Sn) <0.05 0.05 mg/L 09-JUN-07 MX R533071 Strontium (Sr) 0.084 0.005 mg/L 09-JUN-07 MX R533071 Titanium (Ti) <0.001		Lead (Pb)	< 0.005		0.005	mg/L		09-JUN-07	MX	R533071
Strontium (Sr) 0.084 0.005 mg/L 09-JUN-07 MX R533071 Titanium (Ti) <0.001	2	Tin (Sn)	< 0.05		0.05	mg/L		09-JUN-07	MX	R533071
Titanium (Ti) <0.001 0.001 mg/L 09-JUN-07 MX R533071		Strontium (Sr)	0.084		0.005	mg/L		09-JUN-07	MX	R533071
		Titanium (Ti)	< 0.001		0.001	mg/L		09-JUN-07	MX	R533071

L514150 CONTD PAGE 3 of 5

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample Details/Parameters		Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Ву	Batch
L514150-1	RAW WATER LAURIDSEN WELL								
Sampled By:	HVDJ on 05-JUN-07 @ 13:30								
Matrix:	WATER								
Maior Ion	s & Dissolved Metals								
Dissolve	ed Trace Metals								
	Thallium (TI)	< 0.05		0.05	mg/L		09-JUN-07	MX	R533071
	Vanadium (V)	0.003		0.001	mg/L		09-JUN-07	MX	R533071
	Zinc (Zn)	0.005		0.001	mg/L		09-JUN-07	MX	R533071
ICP meta	als for routine water								
	Calcium (Ca)	<0.5		0.5	mg/L		08-JUN-07	JF	R532743
	Potassium (K)	0.9		0.1	mg/L		08-JUN-07	JF	R532743
	Magnesium (Mg)	<0.1		0.1	mg/L		08-JUN-07	JF	R532743
	Sodium (Na)	517		1	mg/L		08-JUN-07	JF	R532743
Ion Bala	nce Calculation		1.000						
	Ion Balance	124	RRV		%	1	09-JUN-07		
	TDS (Calculated)	1090			mg/L		09-JUN-07		
	Hardness (as CaCO3)	<1			mg/L		09-JUN-07		
	Iron (Fe)-Dissolved	0.170		0.005	mg/L		07-JUN-07	HAS	R532428
	Manganese (Mn)-Dissolved	0.004	-	0.001	mg/L		07-JUN-07	HAS	R532428
	Nitrate and Nitrite as N	< 0.07		0.07	mg/L		08-JUN-07		
	Nitrate-N	< 0.05		0.05	mg/L		07-JUN-07	LHH	R532717
	Nitrite-N	< 0.05		0.05	ma/L		07-JUN-07	LHH	R532717
	Sulphate (SO4)	0.8		0.5	ma/L		07-JUN-07	THH	R532717
pH. Cond	ductivity and Total Alkalinity			0.0					11002111
1.1.1.1.1.1	pH	8.7		0.1	pН		06-JUN-07	MAT	R532396
	Conductivity (EC)	1740		3	uS/cm		06-JUN-07	MAT	R532396
	Bicarbonate (HCO3)	744		5	mg/L		06-JUN-07	MAT	R532396
	Carbonate (CO3)	31		5	mg/L		06-JUN-07	MAT	R532396
	Hydroxide (OH)	<5		5	mg/L		06-JUN-07	MAT	R532396
	Alkalinity, Total (as CaCO3)	662		5	mg/L		06-JUN-07	MAT	R532396

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

Sample Detail	s/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	By	Batch
L522178-1 Sampled By: Matrix:	RAW WATER LAURIDSEN WELL CLIENT on 05-JUN-07 @ 13:30 WATER Methane, dissolved	33		0.005	ma/l	26- IUN-07	26- 11 1N-07	CER	R540243
				0.005	ing/L	20-3014-07	20-3011-07	OFK	N340243
	* Refer to Referenced Information for C	ualifiers (if any) and I	Vlethodolog	у.					
							_		

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1622

						VOLATILE PRIORITY POL	LUTANTS			
Contact: Miller						METHOD: A102.1	1	TimeL	ines (days)	
SmoNo : 07MU080999	ProjNo : ABMIWS	GrpSmpNo				SCAN: VPP	i.	from	sample date	i.
StaNo :	StaType:	1.0					1	M	ax Actual	
Comment: Laurisden 1	Residence					Date Received : 8-Ju	n-07 by:	DRC\	- 3	
Matrix : 6						Date Extracted: 12-Ju	n-07 by:	SS	7 7 ok	
SmpDate: 5-Jun-07 (@ 1330 Sam	plers, ID1	: 195635			Date Analyzed : 12-Ju	n-07 by:	BJS	7 7 ok	
EndDate: (Ø	,.ID2				Raw DataFile : V1622				
VMV_CODE COMPOLIND I	NAME	ug/L	flag MDL	+\-	VMV_CODE	COMPOUND NAME		ug/L	flag MDL	+\-
100651 1,1,1,2-Tetra	achloroethane	0.0	.1	.1	95227 1	,1,1-Trichloroethane		0.0	.1	1
95224 1,1,2,2-Tetra	achloroethane	0.0	.1	.1	95228 1	,1,2-Trichloroethane		0.0	.1	1
95214 1,1-Dichloro	ethane	0.0	.1	.1	95216 1	,1-Dichloroethylene		0.0	.1	1
100645 1,1-Dichloro	propylene	0.0	.1	.1	100652 1	1,2,3-Trichlorobenzene		0.0	.1	. ,1
100655 1,2,3-Trichle	oropropane	0.0	.1	.1	100653 1	1,2,4-Trichlorobenzene		0.0	.1	1
100656 1,2,4-Trimet	hylbenzene	0.0	.1	.1	100640 1	,2-Dibramo-3-chloroprop	ane	0-0	.3	.1
100641 1,2-Dibramoe	thane	0.0	.1	.1	95211 1	,2-Dichlorobenzene		0.0	.1	1
95215 1,2-Dichloro	ethane	0.0	.1	.1	95218 1	,2-Dichloropropane		0.0	.1	1
100657 1,3,5-Trimet	hylbenzene	0.0	.1	.1	95212 1	1,3-Dichlorobenzene		0.0	.1	. ,1
100644 1,3-Dichloro	propane	0.0	.1	.1	95213 1	,4-Dichlorobenzene		0.0	.1	1
100643 2,2-Dichlorg	propane	0.0	.1	.1	95207 2	-Chloroethoxyethylene		0.0	.4	.1
100638 2-Chlorotolu	ene	0.0	.1	.1	100639 4	-Chlorotoluene		0.0	.1	1
95200 Benzene		0.0	.1	.1	100634 E	Franchenzene		0.0	.1	1
95201 Bromodichlord	omethane	0.0	.1	.1	95202 E	Bromoform		0.0	.5	.1
95203 Bromomethane		0.0	.1	.1	95204 0	Carbon tetrachloride		0.0	-1	1
95205 Chlorobenzen	e	0.0	.1	.1	95206 C	hloroethane		0.0	.1	1
95208 Chloroform		0.0	.1	.1	106204 0	hloromethane		0.0	.5	,1
95209 Dibramochlore	omethane	0.0	.1	.1	95210 I	Dibromomethane		0.0	.1	1
95221 Ethyl benzene	e	0.0	.1	.1	100646 F	lexachlorobutadiene		0.0	,3	.1
100647 Isopropylben:	zene	0.0	.1	.1	102608 M	TBE		0.0	.1	1
95222 Methylene chi	loride	0.0	2.0	.1	100649 1	Taphthalene		0.0	.1	1
95223 Styrene		0.0	.1	.1	100397 1	RIHALOMETHANES		0.0	.1	1
95225 Tetrachloroe	thylene	0.0	.3	.1	95226 1	oluene		0.0	.1	,1
100654 Trichloroeth	ylene	0.0	.1	.1	95229 1	richlorofluoromethane		0.0	.1	1
95232 Vinyl chlorid	de	0.0	.5	.1	100407 2	CYLENES .		0.0	.1	1
100642 cis-1,2-Dich	loroethylene	0.0	.1	.1	95219 c	ris-1,3-Dichloropropylen	e	0.0	.3	.1
95234 m,p-Xylene		0.0	.1	.1	100637 r	a-Butylbenzene		0.0	.1	1
100650 n-Propylbenze	ene	0.0	.1	.1	95233 d	o-Xylene		0.0	,1	1
100648 p-Isopropylto	oluene	0.0	.1	.1	100635 s	sec-Butylbenzene		0.0	,1	. ,1
100636 tert-Butylbe	nzene	0.0	.1	.1	95217 t	rans-1,2-Dichloroethyle	ne	0.0	.1	1
95220 trans-1,3-Die	chloropropylene	0.0	.3	.1						

Zero (0) values indicate that the analyte is not DETECTED.

MDL - Method Detection Limit

flags B - This analyte is found in the blank as well as the sample. The blank value has been subtracted.

X - Estimated value. The target compound meets the identification criteria, but is less than the MDL.

H - Compound Detected Q - Qualifying ions present but failed the ion ratio limits.

M - This value is calculated by an alternate Raw DataFile.

* - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified For:	Yogesh Kumar	BUSINESS UN	TT MANAGER	mail to:	Miller	Leslie
		ANALYTICAL	THEMISTRY		Alberta Environment	
		ALBERTA RESI	EARCH COUNCIL		2nd Floor Deerfoot Square	
Date:	15-Jun-07	BAG 4000, VI	GREVILLE, ALBERTA		2938-11st NE	
Contact Person:	Grant Prill	T9C 1T4	(780) 632-8455		Calgary, Alberta	T2E 7L7

ALBERTA RESEA	RCH COUNCIL	ORGANICS ANALYSIS DAT	TA SHEET ARC SAMPI	E NUMBE	R: T07	7-162	22
			VOLATILE PRIORITY POLLUTAN	rs		-	-
Contact: Mill	er		METHOD: A102.1	Ti	meline	25 (0	days)
SmpNo : 07MU	080999 ProjNo	: ABMIWS GrpSmpNo :	SCAN: VPP	fr	om sam	ple	date
StaNo :	StaType			_1	Max	Act	tual
Comment: Laur	isden Residence		Date Received : 8-Jun-07 h	Y: DRC	8 a.	3	
Matrix : 6			Date Extracted: 12-Jun-07 h	y: SS	7	7	ok
SmpDate: 5-J	un-07 @ 1330	SamplersID1 : 195635	Date Analyzed : 12-Jun-07 h	y: BJS	7	7	ok
EndDate:	@		Raw DataFile : V1622				
		ESTIMAT	TED				
		CONCENTRA	TION				

CONCENTRATIC

TENTATIVELY IDENTIFIED COMPOUNDS // COMMENTS

2-Propanol, 2-Methyl

1.0

Laboratory's comments regarding this sample:

The following items regarding the sample were recorded. A Yes notation indicates a problem with the specified item.

Inappropriate Sample Container		No	
Inappropriate Temperature	÷	No	
Inappropriate Headspace	2	No	
Broken / Leaking Container	÷	No	

This sample was analyzed by GC/MS. An additional GC/FID scan may have been used for screening

purposes and to assist with quantitative data analysis.

Estimated concentrations for tentively identified compounds are calculated assuming an equal response to internal standards.

- * asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.
- ** the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified For:	Yogesh Kimar	BUSINESS UN	et Manager	mail to:	Miller	Leslie
		ANALYTICAL (THEMISTRY		Alberta Environment	
		ALBERTA RESI	EARCH COUNCIL		2nd Floor Deerfoot Square	
Date:	15-Jun-07	BAG 4000, VI	GREVILLE, ALBER	TA	2938-11st NE	
Contact Person:	Grant Prill	T9C 1T4	(780) 632-84	55	Calgary, Alberta	T2E 7L7

If there are any questions or concerns regarding this report, please contact the person indicated above.

Please check the mailing information and inform the lab if changes are required.

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1623

			EXTRACTABLE PRIORITY POLLU	TANTS		
Contact: Miller			METHOD: EC/3	TimeLin	nes (days)	
SmpNo : 07MU080999 ProjNo : ABMI	WS GrpSmpNo :		SCAN: EPP	from sa	ample date	8
StaNo : StaType:				Max	x Actual	
Comment: Laurisden Residence			Date Received : 8-Jun-07 b	y: DRC\ -	3	
Matrix : 6			Date Extracted: 11-Jun-07 b	y: drc 7	5 ok	
SmpDate: 5-Jun-07 @ 1330 S	amplers.ID1 : 195	635	Date Analyzed : 13-Jun-07 b	y: drc 21	8 ok	
EndDate: @	ID2 :		Raw DataFile : E1623			
VMV_CODE COMPOUND NAME	ug/L flag	MDL +\-	VMV_CODE COMPOUND NAME	ug/L	flag MDL	+\-
100730 1,2,4-Trichlorobenzene	0.0	.1 .1	100734 1,2-Diphenylhydrazine	0.0	.1	.1
103632 2,3,4,6-Tetrachlorophenol	0.0	.1 .2	100708 2,4,6-Trichlorophenol	0.0	.1	.2
100700 2,4-Dichlorophenol	0.0	.1 .2	100701 2,4-Dimethylphenol	0.0	. 2	.2
100703 2,4-Dinitrophenol	0.0	.1 .2	100732 2,4-Dinitrotoluene	0.0	.1	.1
100733 2,6-Dinitrotoluene	0.0	.1 .1	100725 2-Chloronaphthalene	0.0	.1	.1
100699 2-Chlorophenol	0.0	.2 .2	100702 2-Methyl-4,6-dinitrophenol	0.0	.1	.2
100704 2-Nitrophenol	0.0	.1 .2	100738 4-Bromophenyl phenyl ether	0.0	.1	.1
100698 4-Chloro-3-methylphenol	0.0	.1 .2	100742 4-Chlorophenyl phenyl ether	0.0	.1	.1
100705 4-Nitrophenol	0.0	.1 .2	100709 Acenaphthene	0.0	.1	.1
100710 Acenaphthylene	0.0	.1 .1	100711 Anthracene	0.0	.1	.1
100731 Benzidine	0.0	.2 .2	100712 Benzo(a) anthracene	0.0	.1	.1
100716 Benzo (a) pyrene	0.0	.1 .2	100713 Benzo (b) fluoranthene	0.0	.1	.1
100715 Benzo(ghi)perylene	0.0	.2 .1	100714 Benzo(k) fluoranthene	0.0	.1	.1
100739 Bis(2-chloroethoxy)methane	0.0	.1 .1	100740 Bis(2-chloroethyl)ether	0.0	.1	.1
100741 Bis (2-chloroisopropyl) ether	0,0	.1 .1	100748 Bis(2-ethylhexyl)phthalate	1,6 H	1. 1	.4
100743 Butylbenzylphthalate	.1 H	.1 .1	100717 Chrysene	0.0	.1	.1
100744 Di-n-butylphthalate	.3 H	.1 .1	100747 Di-n-octyl phthalate	0.0	.1	.1
100718 Dibenzo (ah) anthracene	0.0	.5 .1	100745 Diethyl phthalate	0.0	.1	.1
100746 Dimethyl phthalate	0.0	.1 .1	100719 Fluoranthene	0.0	.1	.1
100720 Fluorene	0.0	.1 .1	100726 Hexachlorobenzene	0.0	.1	.1
100727 Hexachlorobutadiene	0.0	.5 .1	100728 Hexachlorocyclopentadiene	0.0	.1	.1
100729 Hexachloroethane	0.0	.5 .1	100721 Indeno (1, 2, 3-cd) pyrene	0.0	.1	.1
100749 Isophorone	0.0	.1 .1	100737 N-Nitroso-di-n-propylamine	0.0	.2	.1
100736 N-Nitrosodiphenylamine	0.0	.1 .1	100722 Naphthalene	0.0	.1	.1
100735 Nitrobenzene	0.0	.1 .1	100706 Pentachlorophenol	0.0	.1	.2
100723 Phenanthrene	0.0	.1 .1	100707 Phenol	0.0	.1	.2
100724 Pyrene	0.0	.1 .1				

Zero (0) values indicate that the analyte is not DETECTED.

MDL - Method Detection Limit

flags B - This analyte is found in the blank as well as the sample. The blank value has been subtracted.

X - Estimated value. The target compound meets the identification criteria, but is less than the MDL.

H - Compound Detected Q - Qualifying ions present but failed the ion ratio limits.

M - This value is calculated by an alternate Raw DataFile.

* - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified	1 For:	Yogesh Kumar	BUSINESS UN	NIT MANAGER		mail to:	Miller	Leslie
		ANALYTICAL CHEMISTRY				Alberta Environment		
	_		ALBERTA RES	SEARCH COUN	CILL		2nd Floor Deerfoot Square	
	Date:	13-Jun-07	BAG 4000, 1	VEGREVILLE,	ALBERTA		2938-11st NE	
Contact F	erson:	Grant Prill	T9C 1T4	(780)	632-8455		Calgary, Alberta	T2E 7L7

If there are any questions or concerns regarding this report, please contact the person indicated above.

Please check the mailing information and inform the lab if changes are required.

page 1 of 2

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1624

			COME Hydrocarbons in Water			
Contact: Mill	er		METHOD: 3319	Ti	neLine	s (days)
SmpNo : 07MU	080999 ProjNo	: ABMIWS GrpSmpNo :	SCAN: F123W	fra	an san	ple date
StaNo :	StaType	11		1	Max	Actual
Comment: Laur	isden Residence		Date Received : 8-Jun-07 by	: DRC	- 47	3
Matrix : 6			Date Extracted: 12-Jun-07 by	7: SS	10	7 ok
SmpDate: 5-J	m-07 @ 1330	SamplersID1 : 195635	Date Analyzed : 12-Jun-07 by	r: BJS	14	7 ok
EndDate:	@	ID2 :	Raw DataFile : V1624			

DataFile	Analyzed	VMV_CODE	COMPOUND NAME	ug/L	flag MDL +\-
V1624	12-Jun-07	106092	Fl Benzene	0.0	.1
V1624	12-Jun-07	106094	Fl Ethylbenzene	0.0	.1
V1624	12-Jun-07	106091	F1 Hydrocarbons (C6-C10) -BTEX	0.0	10.0
V1624	12-Jun-07	106093	F1 Toluene	0.0	.1
V1624	12-Jun-07	106095	F1 m,p-Xylene	0.0	.1
V1624	12-Jun-07	106096	F1 o-Xylene	0.0	.1

E1624	13-Jun-07	106097	F2 Hydrocarbons (C10-C16)	0.0	5.0
E1624	13-Jun-07	106098	F3 Hydrocarbons (C16-C34)	0.0	20.0
E1624	13-Jun-07		F4 Hydrocarbons (C34-C50)	0.0	20.0

Zero (0) values indicate that the analyte is not DETECTED.

MDL - Method Detection Limit

flags B - This analyte is found in the blank as well as the sample. The blank value has been subtracted.

X - Estimated value. The target compound meets the identification criteria, but is less than the MDL.

H - Compound Detected Q - Qualifying ions present but failed the ion ratio limits.

M - This value is calculated by an alternate Raw DataFile.

* - asterik following the value for Actual days taken indicates the prescribed time for that event was exceeded.

** - the Date Sampled is unknown, therefore timeline calculations can not be performed.

Certified For:	Yogesh Kumar	BUSINESS UNIT MANAGER	mail to:	Miller	Leslie
		ANALYTICAL CHEMISTRY		Alberta Environment	
		ALBERTA RESEARCH COUNCIL		2nd Floor Deerfoot Square	
Date:	15-Jun-07	BAG 4000, VECREVILLE, ALBER	TA	2938-11st NE	
Contact Person:	Grant Prill	T9C 1T4 (780) 632-84	55	Calgary, Alberta	T2E 7L7

ORGANICS ANALYSIS DATA SHEET

ARC SAMPLE NUMBER: T07-1625

Client: Miller

Sample No: 07MU080999 Group Sample No: Site Descrip/Comment: Laurisden Residence

Station No: Project No: ABMTWS Canister: 1544

Agency: 202 Samp Type: 1 SampMatrix: 6 Collection: 1 Samp Date: 5-Jun-07 Time: 1330 Samplers ID: 195635

SubGroups	FILE	VMV	NAME	ConcRpt	MDL	ConcRptUnit	InjDate
		and the second second					
DG_C1C4							
	W1625	106770	Butane	0.00	.01	ug/L	11-Jun-07
	W1625	106771	Ethane	3.21	.01	ug/L	11-Jun-07
	W1625	106772	Ethylene	0.00	.01	ug/L	11-Jun-07
	W1625	106773	Isobutane	0.00	.01	ug/L	11-Jun-07
	W1625	106774	Methane	31900.00	.01	ug/L	11-Jun-07
	W1625	106775	Propane	0.00	.01	ug/L	11-Jun-07
DG TCD							
20-100	L1625	106776	Carbon dioxide	5.93	1.00	mg/L	12-Jun-07
	L1625	106777	Nitrogen	12.70	6.00	mg/L	12-Jun-07
	L1625		Oxygen	.53	6.00	mg/L	12-Jun-07
G C1C4							
-	C1625	106778	Butane	0.00	.05	ppmv	11-Jun-07
	C1625	106779	Ethane	18.40	.05	ppmv	11-Jun-07
	C1625	106780	Ethylene	0.00	.05	ppmv	11-Jun-07
	C1625	106781	Isobutane	0.00	.05	ppmv	11-Jun-07
	C1625	106782	Methane	979000.00	.05	ppmv	11-Jun-07
	C1625	106783	Propane	0.00	,05	ppmv	11-Jun-07
G TCD							
	G1625	106784	Carbon dioxide	1910.00	300.00	ppmv	11-Jun-07
	G1625	106785	Nitrogen	77600.00	1000.00	ppmv	11-Jun-07
	G1625		Oxygen	9870.00	1000.00	ppmv	11-Jun-07

[ARC Remarks]:

SubGroups

DG_C1C4 and DG_TCD = Disolved Gas in water sample G_C1C4 and G_TCD = Free Gas from canister Certified For: Yogesh Kumar, Business Unit Manager By: Alberta Research Council Vegreville, Alberta T9C 1T4 Date: 14-Jun-07 Environmental Monitoring (780) 632-8455

University of Calgary Carbon Isotope Analyses

	and the local second		Free	Gas	2.5%	Dis	solved C	Gas
Sample I.D.	Field Site	δ ¹³ C _{CH4} (‰)	δ ¹³ C _{C2} (‰)	δ ¹³ C _{Co2} (‰)	δD _{CH4} (‰)	δ ¹³ C _{CH4} (‰)	δ ¹³ C _{C2} (‰)	δ ¹³ C _{CO2} (‰)
KC62-1	Rosebud #1	-59.0	-40.5	-5.0	-285.0	n.r.	n.r.	n.r.
KC63-1	Jessica	-67.4	n.a.	-2,8	-298.3	-66.3	D.S.	n.a.
KC64-1	Lauridain	-63.3	n.a.	1.9	-291.2	-62.5	n.a.	n.a.
KC65-1	Signer	-66.9	n.a	0,7	-297 2	-66.3	n.a.	n.a
KC66-1	Rosebud #2	-64.0	n.d	n.a	n.a.	-63.4	n.d.	n.a.
KC67-1	Rosebud #3	-68.1	n.d.	1.6	R.A.	-69.5	n.d.	n.a.

n.a.	Not Analyzed
n.d.	Not Detected
n.r.	Not Received